
Interactive Music Summarization based on GTTM

Interactive Music Summarization based on GTTM
Keiji Hirata

NTT Communication Science Laboratories
3-1 Morinosato Wakamiya, Atsugi-shi

Kanagawa 243-0198, Japan
+81-46-240-3658

hirata@brl.ntt.co.jp

Shu Matsuda
Digital Art Creation

2-9-1-506 Fuchucho, Fuchu-shi
Tokyo 183-0055, Japan

+81-42-361-2427

shu@dacreation.com

ABSTRACT
This paper presents a music summarization system called
“Papipuun” that we are developing. Papipuun performs quick
listening in a manner similar to a stylus skipping on a scratched
record, but the skipping occurs correctly at punctuations of
musical phrases, not arbitrarily. First, we developed a method for
representing polyphony based on time-span reduction in the
generative theory of tonal music (GTTM) and the deductive
object-oriented database (DOOD). The operation, least upper
bound, plays an important role in similarity checking of
polyphonies represented in our method. Next, in a preprocessing
phase, a user analyzes a set piece by the time-span reduction,
using a dedicated tool called TS-Editor. For the real-time phase,
the user interacts with the main system, Summarizer, to perform
music summarization. Summarizer discovers a piece structure by
means of similarity checking. When the user identifies the
fragments to be skipped, Summarizer deletes them and
concatenates the rest. Papipuun can produce a music
summarization of good quality, reflecting the atmosphere of an
entire piece through interaction with the user.

1. INTRODUCTION
Music summarization is a significant and attractive task because it
potentially can reconstruct the architectures of music systems and,
in addition, open up many new applications. Let us consider
standard musical tasks, such as composition, arrangement and
performance. Many conventional music systems have been
developed for these tasks. Since these tasks are coarse-grained
and highlevel, non-experts in music likely regard them as a black
box full of profound unknown experience, skill, knowledge, and
talent. However, we believe that these tasks can be decomposed
to finer-grained lower-level tasks, such as music summarization
and music information retrieval. If a music system provides a
non-expert user with middle- to low-level tasks, such as
summarization and retrieval, the user may be able to just combine
them to design a high-level task without having to take musical
trifles into account. We think that introducing middleware-level
tasks will make it easier for a non-experts in music to use a music
system. Such a framework will therefore facilitate the tendency
toward making musical technologies more oriented to non-expert
end-users.
Recently, Internet and Web technologies have become widespread,
and various kinds of knowhow and information have been
distributed and accumulated. The combination of middleware-
level tasks, such as music summarization and retrieval, with
Internet/Web technologies will therefore lead to new applications,
such as intelligent karaoke, ringing tones of mobilephone, and
interactive musical art/business on Internet. Some are potentially

killer applications.
The task of music summarization is to find the most distinctive or
representative musical excerpts (automatically). There have been
a few approaches to music summarization. They can be split into
audio-signal and symbolic approaches. The former includes that
by Logan and Chu [8], who asserted that the most interesting and
memorable part of the song, called a key phrase, is that which
occurs most frequently. However, this is not always true because
a key phrase usually depends on a user’s preference and taste. In
addition, Logan and Chu’s method cannot generate a
summarization reflecting the atmosphere of an entire piece. The
symbolic approach is focused on a symbolic representation of
music, which corresponds to the description level of a score, SMF,
and so on. We think that the symbolic approach facilitates the use
of music theory, more than the audio-signal approach. Huron’s
approach [5] is a symbolic one, though the details are not
described in his paper unfortunately.
We aim at achieving music summarization that reflects the
atmosphere of an entire piece with a symbolic approach. For this
purpose, it is important to consider that an intelligent
summarization requires musical knowledge and skills provided by
music theory to analyze a complicated structure of a piece.
This paper presents a prototype system that we are developing
named “Papipuun”. Papipuun performs quick listening by stylus
skipping, where the skipping occurs correctly at punctuations of
musical phrases, not at arbitrary positions. The current version of
Papipuun can accept just piano pieces, such as “Turkish March”
by Mozart or “Let It Be” by the Beatles, arranged for solo piano
(i.e. the format 0 SMF of a single instrument). We think that this
restriction is a good starting point for future enhancement because
it highlights the essential issues to be solved, which are music
representation of polyphony, discovery of a piece’s structure by
similarity checking, identification of fragments to be skipped, and
concatenation of selected fragments.
This paper is organized as follows. We introduce a method of
representing polyphony in Section 2, present the similarity
checking technique based on operation, least upper bound, in
Section 3, and propose a method of interactive music
summarization and describe Papipuun in Section 4. Lastly, we
make concluding remarks and mention future work in Section 5.

2. MUSIC REPRESENTATION
The purpose of designing our music representation method is to
describe the relationships between polyphonies with respect to
time-span reduction and to use time-span reduction for similarity
checking of polyphonies. We have designed a data structure for
representing polyphony based on time-span reduction in the
generative theory of tonal music (GTTM) [7] and the deductive
object-oriented database (DOOD) 1 [11, 6]. A reharmonizer [2]
and a performance rendering system [4] were also developed in
the framework of GTTM and DOOD.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page.
© 2002 IRCAM – Centre Pompidou

Interactive Music Summarization based on GTTM

2.1 Brief Introduction to GTTM and DOOD
Lerdahl and Jackendoff (1983) proposed GTTM as a theory for
formalizing the listener’s intuition. GTTM provides concepts and
procedures for analyzing and interpreting Western tonal music
written in common music notation, namely a score. A score is
just a surface structure of music, and GTTM derives from the
surface structure the score’s hidden hierarchical structures, which
make up the underlying deep structures. Note that the music
treated by GTTM is limited to homophony. It is said that GTTM
is modeled on Chomsky’s transformational grammar since it
employs the framework of the surface and deep structures.
Among the many theories proposed for analyzing music, we
consider GTTM the most appropriate for computer
implementation since it is the most formally constructed one,
although even more efforts at formalizing GTTM are needed
before we can write a working program.
GTTM comprises a grouping structure analysis, a metrical
structure analysis, time-span reduction, and prolongational
reduction. The grouping structure analysis segments a
homophony into shorter groups. It seems that when we sing a
long melody, we have to find the proper points for drawing a
breath. The metrical structure analysis identifies a series of tacti
and beats of a homophony and the positions of strong (or weak)
beats at the levels of a quarter note, half note, a measure, and so
on. It seems that a conductor moves a baton to the music played
or a listener keeps time by hand clapping. In particular, time-span
reduction represents the intuitive idea that if we remove grace
notes from a long melody, we obtain a simple similar sounding
melody. An entire piece of music can eventually be reduced to a
key note or a tonic triad. The time-span reduction is performed
based on the results of the grouping structure and metrical
structure analyses in a bottom-up manner in the sense that parts
come together to form a whole. We do not describe
prolongational reduction here because of space limitation.
DOOD is a knowledge representation method with a theoretical
foundation and is thus tractable. DOOD is an extension of the
first order logic in that it can represent the lack of attributes and
type declaration [11]. From the knowledge description point of
view, DOOD has almost the same functions as the feature
structure [1]. Plaza (1995) claimed that the feature structure is
suitable for describing a case (including melody). A prominent
feature of DOOD is that a deductive rule for DOOD terms to
formally define any relation is available; this yields descriptive
efficiency, accuracy, and expandability.
The DOOD framework is motivated by the introspection that
things in the real world can be represented as the combination of a
basic (atomic) object and a set of the attributes. Hereafter, we
identify an object term with an object itself. We write an object
term as o(…, l : v, …), where o is an atomic symbol to stand for a
basic object, l : v an attribute, l an attribute name (label), and v an
attribute value. The most fundamental relation in the real world is
the “is_a” relation, and it is modeled as the subsumption relation
defined by the deductive rule in the DOOD framework. That is,
the subsumption relation (written as ⊆) represents the relation ”a
more informative object ⊆ a less informative object”. In other
words, it represents “an instantiated object ⊆ an abstract object”
or “a special object ⊆ a generic object”.
We assert that the counterpart of the subsumption relation in
GTTM is the time-span reduction [3]. We think that this
correspondence is the most natural.

2.2 Abstracting and Instantiating Melody
using Time-Span Reduction
A time-span tree in GTTM is a binary tree. In this article, we
refer to an important branch as primary and the other as secondary.
The left-hand side of Figure 1 depicts a simple melody and its
time span tree. The time span (designated as) covered by
a primary and secondary branches is represented by a single note,
called a head, which is here designated as “C4”.

Our representation method can represent such a time-span tree and
the temporal information of every note of a melody, although the
temporal information is not explicitly showed here. The temporal
information is needed in order to perform the time-span reduction
correctly and includes the temporal relationships between a
relevant note and its surrounding notes as well as the absolute
onset timing and the duration of each note.
The melody on the right-hand side of Figure 1, consisting of only
the C4 note, can be considered more abstract than that on the left-
hand side from a time-span reduction point of view. In other
words, the melody on the left-hand side is more instantiated than
that on the right-hand side. This abstraction-instantiation relation
of the melodies is regarded as a kind of the subsumption relation
(the partial order) and is thus written “⊆”. Note that when we
describe these two melodies using our music representation
method, it can be mechanically derived that this subsumption
relation holds by looking at the actual data structures of the
melodies. In a strict interpretation of the time-span reduction in
GTTM, the right-hand side should be a half note of C4. However,
giving priority to mechanization, we determine that the notes
remaining after the time-span reduction have the same onset
timings and durations as before.
The shape of a time-span tree, the head values, and the temporal
structure depend on the interpretation (prior analysis) of a melody.
Once an interpretation is given and it is represented as a data
structure in our method, the data structure conforms to the
subsumption relation in DOOD. If a different interpretation of a
melody is supposed, then the shapes of the time-span tree, the
head values, and the temporal information are different, and
different subsumption relations hold.
Let us show another example of Alberti bass in Figure 2.
Reference [7] lists four ways of generating a head value. In Figure
2, the head values are generated by “fusion”, while “ordinary
reduction” in Figure 1. The way of generating a head value also
depends on the interpretation of a melody given for analysis.

_
primary secondary

Figure 1. Subsumption relation of melodies.

head C4 C4

Instantiating Abstracting

& qq q
⊆ _

Interactive Music Summarization based on GTTM

Since our representation method preserves the onset time and the
duration of a relevant note upon time-span reduction, when a less
important note is removed, the time span occupied by the note is
substituted with an interval without a note. As a result, the
interval can be regarded as a rest with the duration of the removed
note. Thus, the rest marks in the figure are put in parentheses.
They may correspond to the rests in SMF.
Hereafter, for space efficiency, we omit the G clef.

2.3 Reduction to Ordering Information
The temporal structure of our representation method was
conceptualized by straightforwardly intuiting that abstracting the
difference between onset times should produce the ordering
information between them, not absolute timings.
Figure 3 shows examples where the two melodies have the same
pitch sequence but different onset timings and durations.

Upon listening to these two melodies, one may recognize
something common to them: they consist of the same pitches,
whose orderings are identical, i.e. “C4 F4 G4 C5” in the figure.
This observation implies that reducing a melody should yield a
note sequence consisting of the same pitches with just the
ordering information preserved. Note that the original melodies
and the abstract note sequence (temporally reduced melody) share
the same time-span tree. Moreover, our method can represent a
melody that is partly reduced to the ordering and determine the
subsumption relation between it and some other abstract or
instantiated melody as well.

Since the subsumption relation in Figure 3 holds in our
representation method, we think that our method succeeds in
formalizing the tacit assumption for the temporal aspect of the
time-span reduction.
2.4 Representing Polyphony
The scope of GTTM is limited to just homophony for theoretical
reasons. But for high applicability, we think that a practical music
system should treat polyphony, taking into account its deep
structures. Thus, we extend the time-span reduction so that it can
treat polyphony. Basically, polyphony means a texture achieved
by the interweaving of several melodic lines that are independent
but work together harmonically. For our purpose, we need the
following more formal definition of polyphony. First, a
homophony is defined as a melody superimposed by subordinate
melodies and interpreted as a single melody temporally. Next, a
polyphony is defined inductively. A homophony is a polyphony,
and a node of a time-span tree consisting of two polyphonies is a
polyphony, where these two polyphonies may be temporally
overlapped. That is, the principle of our method is to regard two
possibly overlapped polyphonies just as two branches of a time-
span tree’s node by coercively making the order between them
with respect to the time-span reduction.
Figure 4 shows an example of polyphony and our extended time-
span reduction.

On the left-hand side of the figure, each polygon of dotted lines
shows a homophony obtained by decomposing the original
polyphony into components until they become homophonies. On
the right-hand side, only the heads are left with the same onset
timings and durations. Note that the decomposition into
homophonies and the time-span tree in the figure is one way of
analyzing the sample polyphony. If a different analysis result is
given, another decomposition and time-span tree are constructed.

3. SIMILARITY CHECKING
We use the subsumption relation to construct an algorithm for
checking the similarity between two polyphonies, where the core
operation is least upper bound (lub). Intuitively, the operation lub
calculates the largest common part of two given melodies. We
usually define operation lub(x, y) as min({z | x⊆ z ∧ y ⊆ z}). For
all x and y, x ⊆ lub(x,y) and y ⊆ lub(x,y). The mathematical
meaning of lub is well known. If two completely different
melodies that share no common part are given, the calculation
result is a vacancy, which means the most abstract, least
informative melody, denoted as T (called top). Since T
corresponds to a vacancy, we can not always listen to the
calculation result of lub. For instance, if a note in the calculation
result of lub has timing and duration sufficiently instantiated yet T

()

{C4,G4}

Œ() ⊆

Figure 2. Subsumption relations of Alberti bass

qq q q Œ q q q& ⊆ q()q Œ
{E4,G4} {C4} {E4,G4}

{C4,E4,G4} {C4,E4,G4} {C4,E4}

⊆qq q qq qQ HQ h
Figure 4. Time-span reduction of polyphony.

q q∑ ∑∑ Q
. . ∑ ∑ Œ Ó

e _

q
⊆q e _ e

q q q
Figure 3. Reduction of different melodies of same
pitch sequences to identical pitch ordering.

⊆

C4 F4 G4 C5

C4 F4 G4 C5

Interactive Music Summarization based on GTTM

for pitch, the note cannot be translated to an actual note on a score
because its pitch is not determined.
In our method, the similarity checking between two melodies is
based on lub. Since calculating lub of two melodies results in
their largest common part, the larger the common part is, the more
similar to each other the two melodies are. Plaza [9] claimed that
the feature structure [1] is suitable for describing cases and also
used lub for finding cases most similar to a query, although the
concept of Plaza’s representation method for music is essentially
different from ours.

3.1 Similarity based on lub
Figure 5 shows an example of calculating lub of two simple
melodies, C4 G4 and C4. The time-span trees of the melodies are
shown, whereas their temporal structures are omitted for
simplicity. For this example, since subsumption relation “melody
C4 G4 ⊆ melody C4” holds, the result is melody C4.

Figure 6 shows examples of more complicated melodies. The
middle notes of the two melodies are D4 and F4.

Since the notes do not match each other in terms of pitch and the
time-span tree (accordingly, temporal structure, as well), the
resulting melody does not include the middle note.
Figure 7 shows the same sample melodies as in Figure 3, where
the two given melodies having the same pitch sequence yet
different durations.

The result of lub of the two melodies is that notes C4, F4, and G4,
with their durations unknown, form a sequence in this order that
ends with a quarter note of C5. That is, the resulting abstract
melody is the most informative one that can be obtained from the
two input melodies. Notes C4, F4, and G4 are considered
incomplete in the sense that their pitches are determined but their
durations are not.
Let us suppose that two melodies, D4 C4 and C4 G4, both have
note C4 at the origin time (Figure 8). Due to the temporal
structure of our method, our method can align the input melodies
and then perform lub. In Figure 8, the alignment is shown by the
bar lines immediately followed by C4.

The temporal structure introduced enables us to treat a melody
starting at auftakt.
In contrast, Figure 9 shows the result of lub of the same two
melodies as in the previous example, D4 C4 and C4 G4. Since the
notes at the origin time are different however, the result is T.

All examples above treat only monophonies for ease of
explanation, but the lub of our method can treat polyphony as well.

3.2 Similarity Measures
Intuitively speaking, since lub calculates the largest common part
of two input polyphonies, if the calculation result is equal to either
of the two polyphonies, there is no loss of information by the
calculation of lub, and the two polyphonies are considered
identical (most similar). If the calculation result is, in contrast, T,
there is no common part, and they are considered unrelated (least
similar). Thus, our concept for measuring similarity between two
polyphonies is to measure how much information in the lub
calculation is lacking from the two polyphonies.
The lacking information is concerned with the time-span tree and
the temporal structure, which correspond to the aspects of music
formalized by our method. To express similarity parameters, we
here introduce mathematical notations. Let P be a polyphony.
Then, |P|N means the number of notes in P, |P|A the total number
of attributes of all note objects in P, and |P|T the total number of
attributes of all timing objects in P. Since a single note object has
two attributes, pitch/duration and timing, |P|A = |P|N * 2 for well-
formed P. Similarly, since a single timing object has four

Figure 5. Simple example of lub.

qq q qlub(,) =

Figure 6. Largest common part by lub.

lub(,) = qq q qq q qq Œ

q
Figure 8. Temporal alignment.

lub(,) = q qq q

Figure 7. Abstract notes and ordering
information.

e _ q q q_ e q
q e lub(,) = C4 F4 G4 q

q
Figure 9. lub of incoherent melodies.

lub(,) = Tq qq

Interactive Music Summarization based on GTTM

attributes, i.e. predecessor, successor, salient note, and difference,
|P|T = |P|N * 4 for well-formed P. Then we introduce three
measures, RN, RA, and RT, to make the lacking information
quantitative. Let P and Q be polyphonies. Then

R$(P,Q) =
|lub(P,Q)|$

max(|P|$,|Q|$)
RN and RA are associated with the time-span tree, and RT the
temporal structure.
RN is the similarity of time-span trees at the note level, where an
incomplete note is also regarded as a note. RA is the similarity of
time-span trees at the attribute level and indicates to what extent
the pitch and duration attributes of all notes in the result of lub are
instantiated. Likewise, RT is the similarity of temporal structures
at the attribute level and indicates to what extent the four
attributes of all notes in the result of lub are instantiated. Note
that all the attributes of notes and of temporal structures are
assumed to be equally weighted.
Let us look over real values of these similarity measures. If P = Q,
RN = RA = RT = 1.0, and if lub(P,Q) = T in contrast, RN = RA = RT
= 0.0. For an interesting case, consider the similarity between P
and Q such that P ⊆ Q. Then since this leads to |P|$ ≤ |Q|$ for $ =
N, A, or T, we have R$ = |P|$ / |Q|$. For the sample in Figure 6,
we obtain RN = 2/3, RA = 2/3, and RT = 5/9. For the sample in
Figure 7, we obtain RN = 1.0, RA = 5/8, and RT = 10/13. For the
sample in Figure 8, we obtain RN = 1/2, RA = 1/2, and RT = 1/5.
Here we do not explain in depth how these values are calculated
because of space limitation, and please understand that these
values just give a feeling of the multiple viewpoints of polyphonic
similarity.
Conventional working approaches for representing and comparing
music mostly focus on surface information, not deep structures
[10]. A relevant way of taking into account deep structures is to
adopt the concept of reduction. Selfridge-Field (1998) claimed
that the reductions suited for melodic searching and comparison
may not be as concise as those used in the implication-realization
model by Narmour, which was developed for analytic purposes,
although she did not mention the time-span reduction in GTTM.
We think that our method proposed here is a practical answer to
her claim.

4. INTERACTIVE MUSIC
SUMMARIZATION
As described in Section 1, a music summarization proceeds in
these steps: (1) discovery of piece structure by similarity checking,
(2) identification of fragments to be chosen or skipped, and (3)
concatenation of chosen fragments. The operations of our
prototype system, Papipuun, are designed in accordance with
these steps (Figure 10).
In the preprocessing phase, a user analyzes a set piece in SMF
using the time-span reduction and generates the information of
corresponding time-span trees using a dedicated tool, TS-Editor.
In the real-time phase, the user interacts with a main system,
Summarizer, to perform music summarization (Section 4.3).
Summarizer first looks for similar fragments in the piece using the
lub of time-span trees of the fragments, groups them, and displays
them on its window (Figure 15). Several parameters are given for
changing the behavior of the polyphonic similarity, some of which
are used as threshold values of RN, RA, and RT. A user repeatedly
changes the similarity parameters and examines the intermediate
results of grouping similar fragments using Summarizer’s GUI.

When the fragments to be skipped (opposite of left) are fixed,
Summarizer deletes them, concatenates the rest, and lets a user
listen to the resulting concatenation. If the concatenation is
acceptable to the user, the session is terminated, and otherwise the
user may return to the step of changing the similarity parameters.
TS-Editor and Summarizer are both implemented in Java.
Our system design policy here is that the modules underlain by
the music theory operate automatically and ones not underlain by
the music theory are operated manually. In this case, the method
for representing polyphony is underlain by GTTM, but a method
for music summarization is not underlain by any music theory.
Thus, all modules up to and including clustering of similar
fragments are done automatically, and modules after this,
manually. To automatize the manual modules, such as choosing
fragments to be concatenated, various heuristics may be applied to
them. However, the resulting concatenation is not always
preferable and may be rather frustrating. For the present, we think
that our system design policy is proper.

4.1 Preprocessing by TS-Editor
TS-Editor is a dedicated tool that allows a user can enter the time-
span tree of a set piece. The input is the SMF file of a set piece,
and the output is two XML files that are the translation of the
input SMF file and the data of the corresponding time-span tree.
Figure 11 shows the window of TS-Editor at work. It displays a
polyphony in the piano roll format and its corresponding time-
span tree (the first seven bars of “Turkish March”). The
subwindow at the upper left also displays the same time-span tree
in the folder format for ease of pointing at intermediate nodes.
The input procedure has two steps: the time-span tree and
temporal structure.
First, when a SMF file is read into TS-Editor, all notes are sorted
chronologically and a default time-span tree is provisionally
attached to them such that a relevant note is a left-branching
elaboration of its chronological successor (Figure 12a).

$ is N, A and T, respectively

A set piece in SMF

Analysis by time-span reduction

Clustering by similarity checking

Display and audition of a result
in progress

Concatenating chosen fragments

Preprocessing
using
TS-Editor

Figure 10. System operations of Papipuun

Similarity
Parameters

Summarized music in SMF

Processing
using
Summarizer

(1)

(2)

(3)

Interactive Music Summarization based on GTTM

In the figure, each gray box stands for a note of a piano roll score.
Suppose a user wants to obtain the time-span tree in Figure 12b
from that in Figure 12a. A user selects the node designated by the
arrow in Figure 12a and issues the exchange command. TS-Editor
provides four operators including the exchange command to
manipulate a time-span tree. Also, TS-Editor gives a user a
command to group more than one note as a chord.
After entering a time-span tree, the user inputs the temporal
structure information. In Figure 12c, we assume that a relevant
note, enclosed by an oval, occurs between preceding and
succeeding notes. To express this temporal relation, a user
attaches two double lines, one between the relevant and the
preceding notes and the other between the relevant and the
succeeding notes.
Figure 13 shows the same part as Figure 11 when a user finishes
attaching the temporal structure to every note included in the
piece2.
TS-Editor greatly improves the efficiency of entering a time-span
tree and temporal structures. In the case of entering “Turkish
March” using the current version of TS-Editor, it takes about three
hours for four bars on average, where a bar approximately
contains 12.9 notes on average.

4.2 Clustering of Similar Fragments
Figure 14 is a startup snapshot of Summarizer’s GUI taken just
after loading the output files of TS-Editor. The entire score of
“Turkish March” is also displayed in the piano roll format.
According to the standard notation, a piece structure would be
expressed as AABA or ABA’. However, the GUI instead shows a
piece structure by putting on a piano roll score colored rectangular
slices for indicating similar fragments.

At the upper left, there are five sliders for controlling the
similarity parameters. The first three from the top are the
threshold values for RN, RT, and RA, called TN, TT, and TA,
respectively (T$ = 0.0~1.0 for $ = N, T, or A). The next two are
fragment size S and a margin for fragment size M. Within
Summarizer, a fragment of a piece is represented as a
corresponding subtree of the time-span tree of the entire piece.

Figure 13. Polyphony with its time-span tree
and its temporal information.

Figure 11. Polyphony in the piano roll fomat and
its time-span tree on the window of TS-Editor.

Figure 12 Editing a time-span tree and
attaching a temporal structure.

b: after exchange
operation issued

a: initial branching

preceding
note

succeeding
note

c: attaching temporal
structure

note

Figure 14. Startup snapshot of Summarizer’s GUI.

five similarity parameters operation history

summarization button

playback
rate

summarization
ratio audition

buttons

button for registering an
intermediate situation
into operation history

A A A B B C C C

part A
part B

part C

Interactive Music Summarization based on GTTM

Given two fragments of a piece, P and Q, Summarizer determines
that P and Q are similar to each other if RN(P,Q) > TN ∧ RT(P,Q) >
TT ∧ RA(P,Q) > TA. Fragment size S can be varied 2, 4, 8 or 16
beats, and a margin for fragment size M can be varied from 0% to
20%. For instance, when S = 4 and M = 10%, the time spans of
all the fragments for calculating the similarity measures are
restricted within 3.6 (= 4 * 0.9) to 4.4 (= 4 * 1.1) beats. Here, the
length of one beat is obtained from the Tempo meta event in an
input SMF file.
When these similarity parameters are fixed, Summarizer pairwise
calculates the lub of all time-span (sub)trees of a designated size
and makes a decision on similarity based on the similarity
parameters. If fragments P and Q are similar and Q and R are too,
then Summarizer infers P, Q, and R are all similar and makes
them a cluster (e.g. named part A and colored red). In Figure 14,
the width of each rectangular slice means the time span of a
corresponding time-span tree and ranges from 12.8 (= 16 * 0.8) to
19.2 (= 16 * 1.2) beats. On the other hand, the height of each
rectangular slice is one-third the height of the entire piano roll
score, just because there are three kinds of clusters (parts) found.
The height does not make musical sense. The intervals that are
not covered by any rectangular slice mean that there is no similar
fragment within the same piece. Below the GUI window, for
reference, the standard notation of the result of clustering is shown
(A B A C …).

4.3 Interaction with a User
The interaction with the user on the Summarizer’s GUI begins
with the situation shown in Figure 14 and proceeds as follows
(Figure 15).

Upon pressing the summarization button at Step 4, the fragments
chosen by the user at Step 3 are deleted, the remaining parts are
concatenated, and the summarization ratio is updated. At that
time, vertical black bands emerge to indicate the deleted parts
(Figure 16). The 2nd and 3rd of part A, the 2nd of part B, and the

2nd and 3rd of part C are deleted, and the summarization ratio
decreases to 68.75%.

At Step 5, the user plays back an intermediate summarization and
makes fine adjustments by changing the playback rate slider
varied from 0.5~2.0 (1.0 means normal rate). At Step 6, a current
situation consisting of the intermediate result and the values of the
similarity parameters is saved for backtracking. Then, a line of
the current situation is appended to the end of the operation
history. The user can save a current summarization as a SMF file
any time in a session, as well as upon finishing.
For instance, the user can further proceed with summarization and
may change the fragment size from 16 to 4 to 2 and reach the
situation in Figure 17 with the summarization ratio being 41.31%.
Note that the number of lines in the operation history has
increased.

5. CONCLUSION
We have not done an audition experiment with subjects, but
several people who tried Papipuun reported mostly favorable
impressions. However, since a summarization result highly
depends on the skill with which Papipuun is manipulated and the

Figure 16. Snapshot with some parts deleted.

Figure 17. Snapshot of a further summarization.

Step 1: adjust the similarity parameters

Step 2: listen to some fragments colored by
rectangular slices

Step 3: choose the fragments to be deleted

Step 4: press summarization button

Step 5: listen to intermediate summarization

finished

love it like it and
further
improve it

Step 6: register
current
situation

does not
like it

Step 7: backtrack to
previous
situation

Step 1

Step 1

Figure 15. User’s operations on Summarizer’s GUI.

Interactive Music Summarization based on GTTM

user’s musical sense in changing the similarity parameters and
choosing fragments to be skipped, it will be difficult to construct a
proper experimental framework for Papipuun and evaluate it
appropriately.
As mentioned in Section 1, the key issues in music summarization
are (a) music representation of polyphony, (b) discovery of a
piece’s structure by similarity checking, (c) identification of
fragments to be skipped, and (d) concatenation of selected
fragments. Regarding (a), amalgamating other music theories into
our framework for music representation may improve preciseness
and efficiency. The module for (b) is currently implemented for
manual generation. Automatizing this module is future work.
Regarding (c), it may be convenient for a user to indicate parts
that are not only skipped but also concatenated, although the
current GUI provides only a capability for the latter.
Automatizing this task is also future work. For (d), since
Summarizer just concatenates fragments not to be skipped, it
occasionally generates unnatural concatenations. Hence, an
intelligent concatenation technique is required.
TS-Editor greatly reduces effort, but further improvements are
needed. We think one is some means of supporting mechanical,
routine manipulations of a time-span tree in TS-Editor. A similar
idea would be useful for Summarizer’s GUI as well.
Lastly, some other music summarization algorithms can be
considered. One decreases the number of notes by performing the
time-span reduction and fast-forwards the reduced one. We will
try to integrate such algorithms into Papipuun in the future.

6. ACKNOWLEDGMENTS
We thank Mr. Takaki Odachi of Digital Art Creation for data
entry. We also thank Prof. Tatsuya Aoyagi of Tsuda College for
discussions in the early stage of this research.

1 DOOD was originally the name of an international conference
and a research field. Here, it only refers to the name of a
knowledge representation method.
2 In Figure 13, red lines are the branches of the time-span tree,
while green lines are the temporal structures, although readers will
not be able to distinguish them on the hard-copy proceedings,
unfortunately.

7. REFERENCES
[1] Carpenter, B. The Logic of Typed Feature Structures.

Cambridge University Press. 1992.

[2] Hirata, K., and Aoyagi, T. Musically Intelligent Agent for
Composition and Interactive Performance. In Proceedings of
ICMC 1999. pp.167-170.

[3] Hirata, K., and Aoyagi, T. Representation Method and
Primitive Operations for a Polyphony based on Music
Theory GTTM. IPSJ Journal 43, 2. pp.277-286. 2002. In
Japanese.

[4] Hirata, K., and Hiraga, R. Next Generation Performance
Rendering – Exploiting Controllability. In Proceedings
ICMC 2000. pp.360-363.

[5] Huron, D. Perceptual and Cognitive Applications in Music
Information Retrieval. In Proceedings of ISMIR 2000.

[6] Kifer, M., Lausen, G., and Wu, J. Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal of
ACM 42, 3. 1995.

[7] Lerdahl, F., and Jackendoff, R. Generative Theory of Tonal
Music. The MIT Press. 1983.

[8] Logan, B., and Chu, S. Music Summarization using Key
Phrases. In Proceedings of ICASSP 2000.

[9] Plaza, E. Cases as terms: A feature term approach to the
structured representation of cases. Lecture Notes in Artificial
Intelligence Vol.1000. pp.265-276. Springer-Verlag. 1995.

[10] Selfridge-Field, E. Conceptual and Representational Issues in
Melodic Comparison. Computing in Musicology 11, pp.3-64.
1998.

[11] Yokota, K. Towards an Integrated Knowledge-Base
Management System: Overview of R&D on Databases and
Knowledge Bases in the FGCS Project. In Proceedings of
International Conference on Fifth Generation Computer
Systems 1992. Institute for New Generation Computer
Technology. pp.89-112.

