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ABSTRACT 
This paper presents a music summarization system called  
“Papipuun” that we are developing.  Papipuun performs quick 
listening in a manner similar to a stylus skipping on a scratched 
record, but the skipping occurs correctly at punctuations of 
musical phrases, not arbitrarily.  First, we developed a method for 
representing polyphony based on time-span reduction in the 
generative theory of tonal music (GTTM) and the deductive 
object-oriented database (DOOD).  The operation, least upper 
bound, plays an important role in similarity checking of 
polyphonies represented in our method.  Next, in a preprocessing 
phase, a user analyzes a set piece by the time-span reduction, 
using a dedicated tool called TS-Editor.  For the real-time phase, 
the user interacts with the main system, Summarizer, to perform 
music summarization.  Summarizer discovers a piece structure by 
means of similarity checking.  When the user identifies the 
fragments to be skipped, Summarizer deletes them and 
concatenates the rest.  Papipuun can produce a music 
summarization of good quality, reflecting the atmosphere of an 
entire piece through interaction with the user.   

1. INTRODUCTION 
Music summarization is a significant and attractive task because it 
potentially can reconstruct the architectures of music systems and, 
in addition, open up many new applications.  Let us consider 
standard musical tasks, such as composition, arrangement and 
performance.  Many conventional music systems have been 
developed for these tasks.  Since these tasks are coarse-grained 
and highlevel, non-experts in music likely regard them as a black 
box full of profound unknown experience, skill, knowledge, and 
talent.  However, we believe that these tasks can be decomposed 
to finer-grained lower-level tasks, such as music summarization 
and music information retrieval.  If a music system provides a 
non-expert user with middle- to low-level tasks, such as 
summarization and retrieval, the user may be able to just combine 
them to design a high-level task without having to take musical 
trifles into account.  We think that introducing middleware-level 
tasks will make it easier for a non-experts in music to use a music 
system.  Such a framework will therefore facilitate the tendency 
toward making musical technologies more oriented to non-expert 
end-users.   
Recently, Internet and Web technologies have become widespread, 
and various kinds of knowhow and information have been 
distributed and accumulated.  The combination of middleware-
level tasks, such as music summarization and retrieval, with 
Internet/Web technologies will therefore lead to new applications, 
such as intelligent karaoke, ringing tones of mobilephone, and 
interactive musical art/business on Internet.  Some are potentially 

killer applications.   
The task of music summarization is to find the most distinctive or 
representative musical excerpts (automatically).  There have been 
a few approaches to music summarization.  They can be split into 
audio-signal and symbolic approaches.  The former includes that 
by Logan and Chu [8], who asserted that the most interesting and 
memorable part of the song, called a key phrase, is that which 
occurs most frequently.  However, this is not always true because 
a key phrase usually depends on a user’s preference and taste.  In 
addition, Logan and Chu’s method cannot generate a 
summarization reflecting the atmosphere of an entire piece.  The 
symbolic approach is focused on a symbolic representation of 
music, which corresponds to the description level of a score, SMF, 
and so on.  We think that the symbolic approach facilitates the use 
of music theory, more than the audio-signal approach.  Huron’s 
approach [5] is a symbolic one, though the details are not 
described in his paper unfortunately.   
We aim at achieving music summarization that reflects the 
atmosphere of an entire piece with a symbolic approach.  For this 
purpose, it is important to consider that an intelligent 
summarization requires musical knowledge and skills provided by 
music theory to analyze a complicated structure of a piece.   
This paper presents a prototype system that we are developing 
named “Papipuun”.  Papipuun performs quick listening by stylus 
skipping, where the skipping occurs correctly at punctuations of 
musical phrases, not at arbitrary positions.  The current version of 
Papipuun can accept just piano pieces, such as “Turkish March” 
by Mozart or “Let It Be” by the Beatles, arranged for solo piano 
(i.e. the format 0 SMF of a single instrument).  We think that this 
restriction is a good starting point for future enhancement because 
it highlights the essential issues to be solved, which are music 
representation of polyphony, discovery of a piece’s structure by 
similarity checking, identification of fragments to be skipped, and 
concatenation of selected fragments.   
This paper is organized as follows.  We introduce a method of 
representing polyphony in Section 2, present the similarity 
checking technique based on operation, least upper bound, in 
Section 3, and propose a method of interactive music 
summarization and describe Papipuun in Section 4.  Lastly, we 
make concluding remarks and mention future work in Section 5.   

2. MUSIC REPRESENTATION 
The purpose of designing our music representation method is to 
describe the relationships between polyphonies with respect to 
time-span reduction and to use time-span reduction for similarity 
checking of polyphonies.  We have designed a data structure for 
representing polyphony based on time-span reduction in the 
generative theory of tonal music (GTTM) [7] and the deductive 
object-oriented database (DOOD) 1 [11, 6].  A reharmonizer [2] 
and a performance rendering system [4] were also developed in 
the framework of GTTM and DOOD.   
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2.1 Brief Introduction to GTTM and DOOD 
Lerdahl and Jackendoff (1983) proposed GTTM as a theory for 
formalizing the listener’s intuition.  GTTM provides concepts and 
procedures for analyzing and interpreting Western tonal music 
written in common music notation, namely a score.  A score is 
just a surface structure of music, and GTTM derives from the 
surface structure the score’s hidden hierarchical structures, which 
make up the underlying deep structures.  Note that the music 
treated by GTTM is limited to homophony.  It is said that GTTM 
is modeled on Chomsky’s transformational grammar since it 
employs the framework of the surface and deep structures.  
Among the many theories proposed for analyzing music, we 
consider GTTM the most appropriate for computer 
implementation since it is the most formally constructed one, 
although even more efforts at formalizing GTTM are needed 
before we can write a working program.   
GTTM comprises a grouping structure analysis, a metrical 
structure analysis, time-span reduction, and prolongational 
reduction.  The grouping structure analysis segments a 
homophony into shorter groups.  It seems that when we sing a 
long melody, we have to find the proper points for drawing a 
breath.  The metrical structure analysis identifies a series of tacti 
and beats of a homophony and the positions of strong (or weak) 
beats at the levels of a quarter note, half note, a measure, and so 
on.  It seems that a conductor moves a baton to the music played 
or a listener keeps time by hand clapping.  In particular, time-span 
reduction represents the intuitive idea that if we remove grace 
notes from a long melody, we obtain a simple similar sounding 
melody.  An entire piece of music can eventually be reduced to a 
key note or a tonic triad.  The time-span reduction is performed 
based on the results of the grouping structure and metrical 
structure analyses in a bottom-up manner in the sense that parts 
come together to form a whole.  We do not describe 
prolongational reduction here because of space limitation.   
DOOD is a knowledge representation method with a theoretical 
foundation and is thus tractable.  DOOD is an extension of the 
first order logic in that it can represent the lack of attributes and 
type declaration [11].  From the knowledge description point of 
view, DOOD has almost the same functions as the feature 
structure [1].  Plaza (1995) claimed that the feature structure is 
suitable for describing a case (including melody).  A prominent 
feature of DOOD is that a deductive rule for DOOD terms to 
formally define any relation is available; this yields descriptive 
efficiency, accuracy, and expandability.   
The DOOD framework is motivated by the introspection that 
things in the real world can be represented as the combination of a 
basic (atomic) object and a set of the attributes.  Hereafter, we 
identify an object term with an object itself.  We write an object 
term as o(…, l : v, …), where o is an atomic symbol to stand for a 
basic object, l : v an attribute, l an attribute name (label), and v an 
attribute value.  The most fundamental relation in the real world is 
the “is_a” relation, and it is modeled as the subsumption relation 
defined by the deductive rule in the DOOD framework.  That is, 
the subsumption relation (written as ⊆) represents the relation ”a 
more informative object ⊆ a less informative object”.  In other 
words, it represents “an instantiated object ⊆ an abstract object” 
or “a special object ⊆ a generic object”.   
We assert that the counterpart of the subsumption relation in 
GTTM is the time-span reduction [3].  We think that this 
correspondence is the most natural.   
 

2.2 Abstracting and Instantiating Melody 
using Time-Span Reduction 
A time-span tree in GTTM is a binary tree.  In this article, we 
refer to an important branch as primary and the other as secondary.  
The left-hand side of Figure 1 depicts a simple melody and its 
time span tree.  The time span (designated as            ) covered by 
a primary and secondary branches is represented by a single note, 
called a head, which is here designated as “C4”.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our representation method can represent such a time-span tree and 
the temporal information of every note of a melody, although the 
temporal information is not explicitly showed here.  The temporal 
information is needed in order to perform the time-span reduction 
correctly and includes the temporal relationships between a 
relevant note and its surrounding notes as well as the absolute 
onset timing and the duration of each note.   
The melody on the right-hand side of Figure 1, consisting of only 
the C4 note, can be considered more abstract than that on the left-
hand side from a time-span reduction point of view.  In other 
words, the melody on the left-hand side is more instantiated than 
that on the right-hand side.  This abstraction-instantiation relation 
of the melodies is regarded as a kind of the subsumption relation 
(the partial order) and is thus written “⊆”.  Note that when we 
describe these two melodies using our music representation 
method, it can be mechanically derived that this subsumption 
relation holds by looking at the actual data structures of the 
melodies.  In a strict interpretation of the time-span reduction in 
GTTM, the right-hand side should be a half note of C4. However, 
giving priority to mechanization, we determine that the notes 
remaining after the time-span reduction have the same onset 
timings and durations as before.   
The shape of a time-span tree, the head values, and the temporal 
structure depend on the interpretation (prior analysis) of a melody.  
Once an interpretation is given and it is represented as a data 
structure in our method, the data structure conforms to the 
subsumption relation in DOOD.  If a different interpretation of a 
melody is supposed, then the shapes of the time-span tree, the 
head values, and the temporal information are different, and 
different subsumption relations hold.   
Let us show another example of Alberti bass in Figure 2.   
Reference [7] lists four ways of generating a head value. In Figure 
2, the head values are generated by “fusion”, while “ordinary 
reduction” in Figure 1.  The way of generating a head value also 
depends on the interpretation of a melody given for analysis.   
 

_
primary secondary 

Figure 1. Subsumption relation of melodies.

head C4 C4

Instantiating  Abstracting
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Since our representation method preserves the onset time and the 
duration of a relevant note upon time-span reduction, when a less 
important note is removed, the time span occupied by the note is 
substituted with an interval without a note.  As a result, the 
interval can be regarded as a rest with the duration of the removed 
note.  Thus, the rest marks in the figure are put in parentheses.  
They may correspond to the rests in SMF.   
Hereafter, for space efficiency, we omit the G clef.   

2.3 Reduction to Ordering Information 
The temporal structure of our representation method was 
conceptualized by straightforwardly intuiting that abstracting the 
difference between onset times should produce the ordering 
information between them, not absolute timings.   
Figure 3 shows examples where the two melodies have the same 
pitch sequence but different onset timings and durations.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Upon listening to these two melodies, one may recognize 
something common to them: they consist of the same pitches, 
whose orderings are identical, i.e. “C4 F4 G4 C5” in the figure.  
This observation implies that reducing a melody should yield a 
note sequence consisting of the same pitches with just the 
ordering information preserved.  Note that the original melodies 
and the abstract note sequence (temporally reduced melody) share 
the same time-span tree.  Moreover, our method can represent a 
melody that is partly reduced to the ordering and determine the 
subsumption relation between it and some other abstract or 
instantiated melody as well.   

Since the subsumption relation in Figure 3 holds in our 
representation method, we think that our method succeeds in 
formalizing the tacit assumption for the temporal aspect of the 
time-span reduction.   
2.4 Representing Polyphony 
The scope of GTTM is limited to just homophony for theoretical 
reasons.  But for high applicability, we think that a practical music 
system should treat polyphony, taking into account its deep 
structures.  Thus, we extend the time-span reduction so that it can 
treat polyphony.  Basically, polyphony means a texture achieved 
by the interweaving of several melodic lines that are independent 
but work together harmonically.  For our purpose, we need the 
following more formal definition of polyphony.  First, a 
homophony is defined as a melody superimposed by subordinate 
melodies and interpreted as a single melody temporally.  Next, a 
polyphony is defined inductively.  A homophony is a polyphony, 
and a node of a time-span tree consisting of two polyphonies is a 
polyphony, where these two polyphonies may be temporally 
overlapped.  That is, the principle of our method is to regard two 
possibly overlapped polyphonies just as two branches of a time-
span tree’s node by coercively making the order between them 
with respect to the time-span reduction.   
Figure 4 shows an example of polyphony and our extended time-
span reduction.   
 
 
 
 
 
 
 
 
 
 
 
 
On the left-hand side of the figure, each polygon of dotted lines 
shows a homophony obtained by decomposing the original 
polyphony into components until they become homophonies.  On 
the right-hand side, only the heads are left with the same onset 
timings and durations.  Note that the decomposition into 
homophonies and the time-span tree in the figure is one way of 
analyzing the sample polyphony.  If a different analysis result is 
given, another decomposition and time-span tree are constructed.   

3. SIMILARITY CHECKING 
We use the subsumption relation to construct an algorithm for 
checking the similarity between two polyphonies, where the core 
operation is least upper bound (lub).  Intuitively, the operation lub 
calculates the largest common part of two given melodies.  We 
usually define operation lub(x, y) as min({z | x⊆ z ∧  y ⊆ z}).  For 
all x and y, x ⊆ lub(x,y) and y ⊆ lub(x,y).  The mathematical 
meaning of lub is well known.  If two completely different 
melodies that share no common part are given, the calculation 
result is a vacancy, which means the most abstract, least 
informative melody, denoted as T (called top).  Since T 
corresponds to a vacancy, we can not always listen to the 
calculation result of lub.  For instance, if a note in the calculation 
result of lub has timing and duration sufficiently instantiated yet T 

( )

{C4,G4} 

Œ( ) ⊆ 

Figure 2. Subsumption relations of Alberti bass

qq q q Œ q q q& ⊆ q( )q Œ
{E4,G4} {C4} {E4,G4} 

{C4,E4,G4} {C4,E4,G4} {C4,E4}

⊆qq q qq qQ HQ h
Figure 4. Time-span reduction of polyphony. 

q q∑ ∑∑ Q 
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q q q 
Figure 3. Reduction of different melodies of same
pitch sequences to identical pitch ordering. 
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for pitch, the note cannot be translated to an actual note on a score 
because its pitch is not determined.   
In our method, the similarity checking between two melodies is 
based on lub.  Since calculating lub of two melodies results in 
their largest common part, the larger the common part is, the more 
similar to each other the two melodies are.  Plaza [9] claimed that 
the feature structure [1] is suitable for describing cases and also 
used lub for finding cases most similar to a query, although the 
concept of Plaza’s representation method for music is essentially 
different from ours.   

3.1 Similarity based on lub 
Figure 5 shows an example of calculating lub of two simple 
melodies, C4 G4 and C4.  The time-span trees of the melodies are 
shown, whereas their temporal structures are omitted for 
simplicity.  For this example, since subsumption relation “melody 
C4 G4 ⊆ melody C4” holds, the result is melody C4.   
 
 
 
 
 
 
 
 
 
Figure 6 shows examples of more complicated melodies.  The 
middle notes of the two melodies are D4 and F4.   
 
 
 
 
 
 
 
 
 
 
Since the notes do not match each other in terms of pitch and the 
time-span tree (accordingly, temporal structure, as well), the 
resulting melody does not include the middle note.   
Figure 7 shows the same sample melodies as in Figure 3, where 
the two given melodies having the same pitch sequence yet 
different durations.   
 
 
 
 
 
 
 
 
 

The result of lub of the two melodies is that notes C4, F4, and G4, 
with their durations unknown, form a sequence in this order that 
ends with a quarter note of C5.  That is, the resulting abstract 
melody is the most informative one that can be obtained from the 
two input melodies.  Notes C4, F4, and G4 are considered 
incomplete in the sense that their pitches are determined but their 
durations are not.   
Let us suppose that two melodies, D4 C4 and C4 G4, both have 
note C4 at the origin time (Figure 8).  Due to the temporal 
structure of our method, our method can align the input melodies 
and then perform lub.  In Figure 8, the alignment is shown by the 
bar lines immediately followed by C4.   
 
 
 
 
 
 
 
 
 
The temporal structure introduced enables us to treat a melody 
starting at auftakt.   
In contrast, Figure 9 shows the result of lub of the same two 
melodies as in the previous example, D4 C4 and C4 G4.  Since the 
notes at the origin time are different however, the result is T.   
 
 
 
 
 
 
 
 
 
All examples above treat only monophonies for ease of 
explanation, but the lub of our method can treat polyphony as well.   

3.2 Similarity Measures 
Intuitively speaking, since lub calculates the largest common part 
of two input polyphonies, if the calculation result is equal to either 
of the two polyphonies, there is no loss of information by the 
calculation of lub, and the two polyphonies are considered 
identical (most similar).  If the calculation result is, in contrast, T, 
there is no common part, and they are considered unrelated (least 
similar).  Thus, our concept for measuring similarity between two 
polyphonies is to measure how much information in the lub 
calculation is lacking from the two polyphonies.   
The lacking information is concerned with the time-span tree and 
the temporal structure, which correspond to the aspects of music 
formalized by our method.  To express similarity parameters, we 
here introduce mathematical notations.  Let P be a polyphony.  
Then, |P|N means the number of notes in P, |P|A the total number 
of attributes of all note objects in P, and |P|T the total number of 
attributes of all timing objects in P.  Since a single note object has 
two attributes, pitch/duration and timing, |P|A = |P|N * 2 for well-
formed P. Similarly, since a single timing object has four 

Figure 5. Simple example of lub. 

qq q qlub(                    ,                     ) =  

Figure 6. Largest common part by lub. 

lub(                        ,                        ) =  qq q  qq q qq Œ 

q
Figure 8. Temporal alignment. 

lub(                        ,                        ) =  q  qq q

Figure 7. Abstract notes and ordering
information. 
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q e lub(                         ,                             ) =  C4  F4  G4 q
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Figure 9. lub of incoherent  melodies. 
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attributes, i.e. predecessor, successor, salient note, and difference, 
|P|T = |P|N * 4 for well-formed P.  Then we introduce three 
measures, RN, RA, and RT, to make the lacking information 
quantitative. Let P and Q be polyphonies.  Then 

R$(P,Q)  =  
|lub(P,Q)|$ 

max(|P|$,|Q|$)   
RN and RA are associated with the time-span tree, and RT the 
temporal structure.   
RN is the similarity of time-span trees at the note level, where an 
incomplete note is also regarded as a note.  RA is the similarity of 
time-span trees at the attribute level and indicates to what extent 
the pitch and duration attributes of all notes in the result of lub are 
instantiated.  Likewise, RT is the similarity of temporal structures 
at the attribute level and indicates to what extent the four 
attributes of all notes in the result of lub are instantiated.  Note 
that all the attributes of notes and of temporal structures are 
assumed to be equally weighted.   
Let us look over real values of these similarity measures.  If P = Q, 
RN = RA = RT = 1.0, and if lub(P,Q) = T  in contrast, RN = RA = RT 
= 0.0.  For an interesting case, consider the similarity between P 
and Q such that P ⊆ Q.  Then since this leads to |P|$ ≤ |Q|$  for $ = 
N, A, or T, we have R$ = |P|$ / |Q|$.  For the sample in Figure 6, 
we obtain RN = 2/3, RA = 2/3, and RT = 5/9.  For the sample in 
Figure 7, we obtain RN = 1.0, RA = 5/8, and RT = 10/13.  For the 
sample in Figure 8, we obtain RN = 1/2, RA = 1/2, and RT = 1/5.  
Here we do not explain in depth how these values are calculated 
because of space limitation, and please understand that these 
values just give a feeling of the multiple viewpoints of polyphonic 
similarity. 
Conventional working approaches for representing and comparing 
music mostly focus on surface information, not deep structures 
[10].  A relevant way of taking into account deep structures is to 
adopt the concept of reduction.  Selfridge-Field (1998) claimed 
that the reductions suited for melodic searching and comparison 
may not be as concise as those used in the implication-realization 
model by Narmour, which was developed for analytic purposes, 
although she did not mention the time-span reduction in GTTM.  
We think that our method proposed here is a practical answer to 
her claim.   

4. INTERACTIVE MUSIC 
SUMMARIZATION 
As described in Section 1, a music summarization proceeds in 
these steps: (1) discovery of piece structure by similarity checking, 
(2) identification of fragments to be chosen or skipped, and (3) 
concatenation of chosen fragments.  The operations of our 
prototype system, Papipuun, are designed in accordance with 
these steps (Figure 10).   
In the preprocessing phase, a user analyzes a set piece in SMF 
using the time-span reduction and generates the information of 
corresponding time-span trees using a dedicated tool, TS-Editor.  
In the real-time phase, the user interacts with a main system, 
Summarizer, to perform music summarization (Section 4.3).  
Summarizer first looks for similar fragments in the piece using the 
lub of time-span trees of the fragments, groups them, and displays 
them on its window (Figure 15).  Several parameters are given for 
changing the behavior of the polyphonic similarity, some of which 
are used as threshold values of RN, RA, and RT.  A user repeatedly 
changes the similarity parameters and examines the intermediate 
results of grouping similar fragments using Summarizer’s GUI.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the fragments to be skipped (opposite of left) are fixed, 
Summarizer deletes them, concatenates the rest, and lets a user 
listen to the resulting concatenation.  If the concatenation is 
acceptable to the user, the session is terminated, and otherwise the 
user may return to the step of changing the similarity parameters.  
TS-Editor and Summarizer are both implemented in Java.   
Our system design policy here is that the modules underlain by 
the music theory operate automatically and ones not underlain by 
the music theory are operated manually.  In this case, the method 
for representing polyphony is underlain by GTTM, but a method 
for music summarization is not underlain by any music theory.  
Thus, all modules up to and including clustering of similar 
fragments are done automatically, and modules after this, 
manually.  To automatize the manual modules, such as choosing 
fragments to be concatenated, various heuristics may be applied to 
them.  However, the resulting concatenation is not always 
preferable and may be rather frustrating.  For the present, we think 
that our system design policy is proper.   

4.1 Preprocessing by TS-Editor 
TS-Editor is a dedicated tool that allows a user can enter the time-
span tree of a set piece.  The input is the SMF file of a set piece, 
and the output is two XML files that are the translation of the 
input SMF file and the data of the corresponding time-span tree.   
Figure 11 shows the window of TS-Editor at work.  It displays a 
polyphony in the piano roll format and its corresponding time-
span tree (the first seven bars of “Turkish March”).  The 
subwindow at the upper left also displays the same time-span tree 
in the folder format for ease of pointing at intermediate nodes.  
The input procedure has two steps: the time-span tree and 
temporal structure.   
First, when a SMF file is read into TS-Editor, all notes are sorted 
chronologically and a default time-span tree is provisionally 
attached to them such that a relevant note is a left-branching 
elaboration of its chronological successor (Figure 12a).   

$ is N, A and T, respectively 

A set piece in SMF 

Analysis by time-span reduction 

Clustering by similarity checking 

Display and audition of a result  
in progress  

Concatenating chosen fragments 

Preprocessing 
using  
TS-Editor 

Figure 10. System operations of Papipuun 

Similarity 
Parameters

Summarized music in SMF 

Processing 
using 
Summarizer

(1)

(2)

(3)
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In the figure, each gray box stands for a note of a piano roll score.  
Suppose a user wants to obtain the time-span tree in Figure 12b 
from that in Figure 12a.  A user selects the node designated by the 
arrow in Figure 12a and issues the exchange command.  TS-Editor 
provides four operators including the exchange command to 
manipulate a time-span tree.  Also, TS-Editor gives a user a 
command to group more than one note as a chord.   
After entering a time-span tree, the user inputs the temporal 
structure information.  In Figure 12c, we assume that a relevant 
note, enclosed by an oval, occurs between preceding and 
succeeding notes.  To express this temporal relation, a user 
attaches two double lines, one between the relevant and the 
preceding notes and the other between the relevant and the 
succeeding notes.   
Figure 13 shows the same part as Figure 11 when a user finishes 
attaching the temporal structure to every note included in the 
piece2. 
TS-Editor greatly improves the efficiency of entering a time-span 
tree and temporal structures.  In the case of entering “Turkish 
March” using the current version of TS-Editor, it takes about three 
hours for four bars on average, where a bar approximately 
contains 12.9 notes on average.   
 

 
 
 
 
 

4.2 Clustering of Similar Fragments 
Figure 14 is a startup snapshot of Summarizer’s GUI taken just 
after loading the output files of TS-Editor.  The entire score of 
“Turkish March” is also displayed in the piano roll format.  
According to the standard notation, a piece structure would be 
expressed as AABA or ABA’.  However, the GUI instead shows a 
piece structure by putting on a piano roll score colored rectangular 
slices for indicating similar fragments.   
 
 
 

 
 
 
 
 
 
 
 
At the upper left, there are five sliders for controlling the 
similarity parameters.  The first three from the top are the 
threshold values for RN, RT, and RA, called TN, TT, and TA, 
respectively (T$ = 0.0~1.0 for $ = N, T, or A).  The next two are 
fragment size S and a margin for fragment size M.  Within 
Summarizer, a fragment of a piece is represented as a 
corresponding subtree of the time-span tree of the entire piece.   

Figure 13. Polyphony with its time-span tree 
and its temporal information. 

Figure 11. Polyphony in the piano roll fomat and 
its time-span tree on the window of TS-Editor. 

Figure 12 Editing a time-span tree and 
attaching a temporal structure. 

b: after exchange 
operation issued 

a: initial branching 

preceding 
note 

succeeding 
note 

c: attaching temporal 
structure 

note 

Figure 14. Startup snapshot of Summarizer’s GUI. 
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Given two fragments of a piece, P and Q, Summarizer determines 
that P and Q are similar to each other if RN(P,Q) > TN ∧ RT(P,Q) > 
TT  ∧ RA(P,Q) > TA.  Fragment size S can be varied 2, 4, 8 or 16 
beats, and a margin for fragment size M can be varied from 0% to 
20%.  For instance, when S = 4 and M = 10%, the time spans of 
all the fragments for calculating the similarity measures are 
restricted within 3.6 (= 4 * 0.9) to 4.4 (= 4 * 1.1) beats.  Here, the 
length of one beat is obtained from the Tempo meta event in an 
input SMF file.   
When these similarity parameters are fixed, Summarizer pairwise 
calculates the lub of all time-span (sub)trees of a designated size 
and makes a decision on similarity based on the similarity 
parameters.   If fragments P and Q are similar and Q and R are too, 
then Summarizer infers P, Q, and R are all similar and makes 
them a cluster (e.g. named part A and colored red).  In Figure 14, 
the width of each rectangular slice means the time span of a 
corresponding time-span tree and ranges from 12.8 (= 16 * 0.8) to 
19.2 (= 16 * 1.2) beats.  On the other hand, the height of each 
rectangular slice is one-third the height of the entire piano roll 
score, just because there are three kinds of clusters (parts) found.  
The height does not make musical sense.  The intervals that are 
not covered by any rectangular slice mean that there is no similar 
fragment within the same piece.  Below the GUI window, for 
reference, the standard notation of the result of clustering is shown 
(A B A C …).   

4.3 Interaction with a User 
The interaction with the user on the Summarizer’s GUI begins 
with the situation shown in Figure 14 and proceeds as follows 
(Figure 15).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Upon pressing the summarization button at Step 4, the fragments 
chosen by the user at Step 3 are deleted, the remaining parts are 
concatenated, and the summarization ratio is updated.  At that 
time, vertical black bands emerge to indicate the deleted parts 
(Figure 16).  The 2nd and 3rd of part A, the 2nd of part B, and the 

2nd and 3rd of part C are deleted, and the summarization ratio 
decreases to 68.75%.   
 

 
 
 
 
At Step 5, the user plays back an intermediate summarization and 
makes fine adjustments by changing the playback rate slider 
varied from 0.5~2.0 (1.0 means normal rate).  At Step 6, a current 
situation consisting of the intermediate result and the values of the 
similarity parameters is saved for backtracking.  Then, a line of 
the current situation is appended to the end of the operation 
history.  The user can save a current summarization as a SMF file 
any time in a session, as well as upon finishing.   
For instance, the user can further proceed with summarization and 
may change the fragment size from 16 to 4 to 2 and reach the 
situation in Figure 17 with the summarization ratio being 41.31%.  
Note that the number of lines in the operation history has 
increased.   
 
 

 
 
 
 

5. CONCLUSION 
We have not done an audition experiment with subjects, but 
several people who tried Papipuun reported mostly favorable 
impressions.  However, since a summarization result highly 
depends on the skill with which Papipuun is manipulated and the 

Figure 16. Snapshot with some parts deleted.

Figure 17. Snapshot of a further summarization.

Step 1: adjust the similarity parameters 

Step 2: listen to some fragments colored by
rectangular slices 

Step 3: choose the fragments to be deleted 

Step 4: press summarization button 

Step 5: listen to intermediate summarization 

finished 

love it like it and 
further 
improve it 

Step 6: register  
current 
situation 

does not 
like it 

Step 7: backtrack to 
previous 
situation 

Step 1

Step 1

Figure 15. User’s operations on Summarizer’s GUI.
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user’s musical sense in changing the similarity parameters and 
choosing fragments to be skipped, it will be difficult to construct a 
proper experimental framework for Papipuun and evaluate it 
appropriately.   
As mentioned in Section 1, the key issues in music summarization 
are (a) music representation of polyphony, (b) discovery of a 
piece’s structure by similarity checking, (c) identification of 
fragments to be skipped, and (d) concatenation of selected 
fragments.  Regarding (a), amalgamating other music theories into 
our framework for music representation may improve preciseness 
and efficiency.  The module for (b) is currently implemented for 
manual generation.  Automatizing this module is future work.  
Regarding (c), it may be convenient for a user to indicate parts 
that are not only skipped but also concatenated, although the 
current GUI provides only a capability for the latter.  
Automatizing this task is also future work.  For (d), since 
Summarizer just concatenates fragments not to be skipped, it 
occasionally generates unnatural concatenations.  Hence, an 
intelligent concatenation technique is required.   
TS-Editor greatly reduces effort, but further improvements are 
needed.  We think one is some means of supporting mechanical, 
routine manipulations of a time-span tree in TS-Editor.  A similar 
idea would be useful for Summarizer’s GUI as well.   
Lastly, some other music summarization algorithms can be 
considered.  One decreases the number of notes by performing the 
time-span reduction and fast-forwards the reduced one.  We will 
try to integrate such algorithms into Papipuun in the future.   
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1 DOOD was originally the name of an international conference 
and a research field.  Here, it only refers to the name of a 
knowledge representation method. 
2 In Figure 13, red lines are the branches of the time-span tree, 
while green lines are the temporal structures, although readers will 
not be able to distinguish them on the hard-copy proceedings, 
unfortunately.   
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