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ABSTRACT 
Imagine the following situation. You’re in your car, listening to 
the radio and suddenly you hear a song that catches your attention. 
It’s the best new song you have heard for a long time, but you 
missed the announcement and don’t recognize the artist. Still, you 
would like to know more about this music. What should you do? 
You could call the radio station, but that’s too cumbersome. 
Wouldn’t it be nice if you could push a few buttons on your 
mobile phone and a few seconds later the phone would respond 
with the name of the artist and the title of the music you’re 
listening to? Perhaps even sending an email to your default email 
address with some supplemental information. In this paper we 
present an audio fingerprinting system, which makes the above 
scenario possible. By using the fingerprint of an unknown audio 
clip as a query on a fingerprint database, which contains the 
fingerprints of a large library of songs, the audio clip can be 
identified. At the core of the presented system are a highly robust 
fingerprint extraction method and a very efficient fingerprint 
search strategy, which enables searching a large fingerprint 
database with only limited computing resources. 

1. INTRODUCTION 
Fingerprint systems are over one hundred years old. In 1893 Sir 
Francis Galton was the first to “prove” that no two fingerprints of 
human beings were alike. Approximately 10 years later Scotland 
Yard accepted a system designed by Sir Edward Henry for 
identifying fingerprints of people. This system relies on the pattern 
of dermal ridges on the fingertips and still forms the basis of all 
“human” fingerprinting techniques of today. This type of forensic 
“human” fingerprinting system has however existed for longer 
than a century, as 2000 years ago Chinese emperors were already 
using thumbprints to sign important documents. The implication is 
that already those emperors (or at least their administrative 
servants) realized that every fingerprint was unique. Conceptually 
a fingerprint can be seen as a “human” summary or signature that 
is unique for every human being. It is important to note that a 
human fingerprint differs from a textual summary in that it does 
not allow the reconstruction of other aspects of the original. For 
example, a human fingerprint does not convey any information 
about the color of the person’s hair or eyes. 

Recent years have seen a growing scientific and industrial interest 
in computing fingerprints of multimedia objects [1][2][3][4] 
[5][6]. The growing industrial interest is shown among others by a 
large number of (startup) companies [7][8][9][10][11][12][13] 
and the recent request for information on audio fingerprinting 
technologies by the International Federation of the Phonographic 
Industry (IFPI) and the Recording Industry Association of 
America (RIAA) [14].  

The prime objective of multimedia fingerprinting is an efficient 
mechanism to establish the perceptual equality of two multimedia 
objects: not by comparing the (typically large) objects themselves, 
but by comparing the associated fingerprints (small by design). In 
most systems using fingerprinting technology, the fingerprints of a 
large number of multimedia objects, along with their associated 
meta-data (e.g. name of artist, title and album) are stored in a 
database. The fingerprints serve as an index to the meta-data. The 
meta-data of unidentified multimedia content are then retrieved by 
computing a fingerprint and using this as a query in the 
fingerprint/meta-data database. The advantage of using 
fingerprints instead of the multimedia content itself is three-fold: 

1. Reduced memory/storage requirements as fingerprints 
are relatively small; 

2. Efficient comparison as perceptual irrelevancies have 
already been removed from fingerprints; 

3. Efficient searching as the dataset to be searched is 
smaller. 

As can be concluded from above, a fingerprint system generally 
consists of two components: a method to extract fingerprints and a 
method to efficiently search for matching fingerprints in a 
fingerprint database.  

This paper describes an audio fingerprinting system that is suitable 
for a large number of applications. After defining the concept of 
an audio fingerprint in Section 2 and elaborating on possible 
applications in Section 3, we focus on the technical aspects of the 
proposed audio fingerprinting system. Fingerprint extraction is 
described in Section 4 and fingerprint searching in Section 5.  

2. AUDIO FINGERPRINTING CONCEPTS 
2.1 Audio Fingerprint Definition 
Recall that an audio fingerprint can be seen as a short summary of 
an audio object. Therefore a fingerprint function F should map an 
audio object X, consisting of a large number of bits, to a 
fingerprint of only a limited number of bits.  

Here we can draw an analogy with so-called hash functions1, 
which are well known in cryptography. A cryptographic hash 
function H maps an (usually large) object X to a (usually small) 
hash value (a.k.a. message digest). A cryptographic hash function 
allows comparison of two large objects X and Y, by just 
comparing their respective hash values H(X) and H(Y). Strict 
mathematical equality of the latter pair implies equality of the 
former, with only a very low probability of error. For a properly 
designed cryptographic hash function this probability is 2-n, where 
n equals the number of bits of the hash value. Using cryptographic 
hash functions, an efficient method exists to check whether or not 
a particular data item X is contained in a given and large data set 
Y={Yi}. Instead of storing and comparing with all of the data in Y, 
                                                                 
1 In the literature fingerprinting is sometimes also referred to as 

robust or perceptual hashing[5]. 
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it is sufficient to store the set of hash values {hi = H(Yi)}, and to 
compare H(X) with this set of hash values.  

At first one might think that cryptographic hash functions are a 
good candidate for fingerprint functions. However recall from the 
introduction that, instead of strict mathematical equality, we are 
interested in perceptual similarity. For example, an original CD 
quality version of ‘Rolling Stones – Angie’ and an MP3 version at 
128Kb/s sound the same to the human auditory system, but their 
waveforms can be quite different.  Although the two versions are 
perceptually similar they are mathematically quite different. 
Therefore cryptographic hash functions cannot decide upon 
perceptual equality of these two versions. Even worse, 
cryptographic hash functions are typically bit-sensitive: a single 
bit of difference in the original object results in a completely 
different hash value.  

Another valid question the reader might ask is: “Is it not possible 
to design a fingerprint function that produces mathematically 
equal fingerprints for perceptually similar objects?” The question 
is valid, but the answer is that such a modeling of perceptual 
similarity is fundamentally not possible. To be more precise: it is a 
known fact that perceptual similarity is not transitive. Perceptual 
similarity of a pair of objects X and Y and of another pair of 
objects Y and Z does not necessarily imply the perceptual 
similarity of objects X and Z. However modeling perceptual 
similarity by mathematical equality of fingerprints would lead to 
such a relationship. 

Given the above arguments, we propose to construct a fingerprint 
function in such a way that perceptual similar audio objects result 
in similar fingerprints. Furthermore, in order to be able 
discriminate between different audio objects, there must be a very 
high probability that dissimilar audio objects result in dissimilar 
fingerprints. More mathematically, for a properly designed 
fingerprint function F, there should be a threshold T such that 
with very high probability ||F(X)-F(Y)||≤T  if objects X and Y are 
similar and ||F(X)-F(Y)||>T when they are dissimilar.  

2.2 Audio Fingerprint System Parameters 
Having a proper definition of an audio fingerprint we now focus 
on the different parameters of an audio fingerprint system. The 
main parameters are: 

• Robustness: can an audio clip still be identified after 
severe signal degradation? In order to achieve high 
robustness the fingerprint should be based on perceptual 
features that are invariant (at least to a certain degree) 
with respect to signal degradations. Preferably, severely 
degraded audio still leads to very similar fingerprints. 
The false negative rate is generally used to express the 
robustness. A false negative occurs when the 
fingerprints of perceptually similar audio clips are too 
different to lead to a positive match. 

• Reliability: how often is a song incorrectly identified? 
E.g. “Rolling Stones – Angie” being identified as 
“Beatles – Yesterday”. The rate at which this occurs is 
usually referred to as the false positive rate. 

• Fingerprint size: how much storage is needed for a 
fingerprint? To enable fast searching, fingerprints are 
usually stored in RAM memory. Therefore the 
fingerprint size, usually expressed in bits per second or 
bits per song, determines to a large degree the memory 
resources that are needed for a fingerprint database 
server. 

• Granularity: how many seconds of audio is needed to 
identify an audio clip? Granularity is a parameter that 

can depend on the application. In some applications the 
whole song can be used for identification, in others one 
prefers to identify a song with only a short excerpt of 
audio. 

• Search speed and scalability: how long does it take to 
find a fingerprint in a fingerprint database? What if the 
database contains thousands and thousands of songs? 
For the commercial deployment of audio fingerprint 
systems, search speed and scalability are a key 
parameter. Search speed should be in the order of 
milliseconds for a database containing over 100,000 
songs using only limited computing resources (e.g. a 
few high-end PC’s). 

These five basic parameters have a large impact on each other. For 
instance, if one wants a lower granularity, one needs to extract a 
larger fingerprint to obtain the same reliability. This is due to the 
fact that the false positive rate is inversely related to the 
fingerprint size. Another example: search speed generally 
increases when one designs a more robust fingerprint. This is due 
to the fact that a fingerprint search is a proximity search. I.e. a 
similar (or the most similar) fingerprint has to be found. If the 
features are more robust the proximity is smaller. Therefore the 
search speed can increase. 

3. APPLICATIONS 
In this section we elaborate on a number of applications for audio 
fingerprinting. 

3.1 Broadcast Monitoring 
Broadcast monitoring is probably the most well known application 
for audio fingerprinting[2][3][4][5][12][13]. It refers to the 
automatic playlist generation of radio, television or web 
broadcasts for, among others, purposes of royalty collection, 
program verification, advertisement verification and people 
metering. Currently broadcast monitoring is still a manual process: 
i.e. organizations interested in playlists, such as performance 
rights organizations, currently have “real” people listening to 
broadcasts and filling out scorecards.  

A large-scale broadcast monitoring system based on fingerprinting 
consists of several monitoring sites and a central site where the 
fingerprint server is located. At the monitoring sites fingerprints 
are extracted from all the (local) broadcast channels. The central 
site collects the fingerprints from the monitoring sites. 
Subsequently, the fingerprint server, containing a huge fingerprint 
database, produces the playlists of all the broadcast channels. 

3.2 Connected Audio 
Connected audio is a general term for consumer applications 
where music is somehow connected to additional and supporting 
information. The example given in the abstract, using a mobile 
phone to identify a song is one of these examples. This business is 
actually pursued by a number of companies [10][13]. The audio 
signal in this application is severely degraded due to processing 
applied by radio stations, FM/AM transmission, the acoustical 
path between the loudspeaker and the microphone of the mobile 
phone, speech coding and finally the transmission over the mobile 
network. Therefore, from a technical point of view, this is a very 
challenging application. 

Other examples of connected audio are (car) radios with an 
identification button or fingerprint applications “listening” to the 
audio streams leaving or entering a soundcard on a PC. By 
pushing an “info” button in the fingerprint application, the user 
could be directed to a page on the Internet containing information 
about the artist. Or by pushing a “buy” button the user would be 
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able to buy the album on the Internet. In other words, audio 
fingerprinting can provide a universal linking system for audio 
content. 

3.3 Filtering Technology for File Sharing 
Filtering refers to active intervention in content distribution. The 
prime example for filtering technology for file sharing was 
Napster [15]. Starting in June 1999, users who downloaded the 
Napster client could share and download a large collection of 
music for free. Later, due to a court case by the music industry,  
Napster users were forbidden to download copyrighted songs. 
Therefore in March 2001 Napster installed an audio filter based 
on file names, to block downloads of copyrighted songs. The filter 
was not very effective, because users started to intentionally 
misspell filenames. In May 2001 Napster introduced an audio 
fingerprinting system by Relatable [8], which aimed at filtering 
out copyrighted material even if it was misspelled. Owing to 
Napster’s closure only two months later, the effectiveness of that 
specific fingerprint system is, to the best of the author’s 
knowledge, not publicly known. 

In a legal file sharing service one could apply a more refined 
scheme than just filtering out copyrighted material. One could 
think of a scheme with free music, different kinds of premium 
music (accessible to those with a proper subscription) and 
forbidden music. 

Although from a consumer standpoint, audio filtering could be 
viewed as a negative technology, there are also a number of 
potential benefits to the consumer. Firstly it can organize music 
song titles in search results in a consistent way by using the 
reliable meta-data of the fingerprint database. Secondly, 
fingerprinting can guarantee that what is downloaded is actually 
what it says it is.  

3.4 Automatic Music Library Organization 
Nowadays many PC users have a music library containing several 
hundred, sometimes even thousands, of songs. The music is 
generally stored in compressed format (usually MP3) on their 
hard-drives. When these songs are obtained from different 
sources, such as ripping from a CD or downloading from file 
sharing networks, these libraries are often not well organized. 
Meta-data is often inconsistent, incomplete and sometimes even 
incorrect. Assuming that the fingerprint database contains correct 
meta-data, audio fingerprinting can make the meta-data of the 
songs in the library consistent, allowing easy organization based 
on, for example, album or artist. For example, ID3Man [16], a 
tool powered by Auditude [7] fingerprinting technology is already 
available for tagging unlabeled or mislabeled MP3 files. A similar 
tool from Moodlogic [11] is available as a Winamp plug-in [17]. 

4. AUDIO FINGERPRINT EXTRACTION 
4.1 Guiding Principles 
Audio fingerprints intend to capture the relevant perceptual 
features of audio. At the same time extracting and searching 
fingerprints should be fast and easy, preferably with a small 
granularity to allow usage in highly demanding applications (e.g. 
mobile phone recognition). A few fundamental questions have to 
be addressed before starting the design and implementation of 
such an audio fingerprinting scheme. The most prominent 
question to be addressed is: what kind of features are the most 
suitable. A scan of the existing literature shows that the set of 
relevant features can be broadly divided into two classes: the class 
of semantic features and the class of non-semantic features. 
Typical elements in the former class are genre, beats-per-minute, 
and mood. These types of features usually have a direct 

interpretation, and are actually used to classify music, generate 
play-lists and more. The latter class consists of features that have a 
more mathematical nature and are difficult for humans to ‘read’ 
directly from music. A typical element in this class is 
AudioFlatness that is proposed in MPEG-7 as an audio descriptor 
tool [2]. For the work described in this paper we have for a 
number of reasons explicitly chosen to work with non-semantic 
features: 

1. Semantic features don’t always have a clear and 
unambiguous meaning. I.e. personal opinions differ over 
such classifications. Moreover, semantics may actually 
change over time. For example, music that was 
classified as hard rock 25 years ago may be viewed as 
soft listening today. This makes mathematical analysis 
difficult. 

2. Semantic features are in general more difficult to 
compute than non-semantic features. 

3. Semantic features are not universally applicable. For 
example, beats-per-minute does not typically apply to 
classical music. 

A second question to be addressed is the representation of 
fingerprints. One obvious candidate is the representation as a 
vector of real numbers, where each component expresses the 
weight of a certain basic perceptual feature. A second option is to 
stay closer in spirit to cryptographic hash functions and represent 
digital fingerprints as bit-strings. For reasons of reduced search 
complexity we have decided in this work for the latter option. The 
first option would imply a similarity measure involving real 
additions/subtractions and depending on the similarity measure 
maybe even real multiplications. Fingerprints that are based on bit 
representations can be compared by simply counting bits. Given 
the expected application scenarios, we do not expect a high 
robustness for each and every bit in such a binary fingerprint. 
Therefore, in contrast to cryptographic hashes that typically have a 
few hundred bits at the most, we will allow fingerprints that have 
a few thousand bits. Fingerprints containing a large number bits 
allow reliable identification even if the percentage of non-
matching bits is relatively high.  

A final question involves the granularity of fingerprints. In the 
applications that we envisage there is no guarantee that the audio 
files that need to be identified are complete. For example, in 
broadcast monitoring, any interval of 5 seconds is a unit of music 
that has commercial value, and therefore may need to be identified 
and recognized. Also, in security applications such as file filtering 
on a peer-to-peer network, one would not wish that deletion of the 
first few seconds of an audio file would prevent identification. In 
this work we therefore adopt the policy of fingerprints streams by 
assigning sub-fingerprints to sufficiently small atomic intervals 
(referred to as frames). These sub-fingerprints might not be large 
enough to identify the frames themselves, but a longer interval, 
containing sufficiently many frames, will allow robust and reliable 
identification. 

4.2 Extraction Algorithm 
Most fingerprint extraction algorithms are based on the following 
approach. First the audio signal is segmented into frames. For 
every frame a set of features is computed. Preferably the features 
are chosen such that they are invariant (at least to a certain degree) 
to signal degradations. Features that have been proposed are well 
known audio features such as Fourier coefficients [4], Mel 
Frequency Cepstral Coefficients (MFFC) [18], spectral flatness 
[2], sharpness [2], Linear Predictive Coding (LPC) coefficients 
[2] and others. Also derived quantities such as derivatives, means 
and variances of audio features are used. Generally the extracted 
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features are mapped into a more compact representation by using 
classification algorithms, such as Hidden Markov Models [3], or 
quantization [5]. The compact representation of a single frame 
will be referred to as a sub-fingerprint. The global fingerprint 
procedure converts a stream of audio into a stream of sub-
fingerprints. One sub-fingerprint usually does not contain 
sufficient data to identify an audio clip. The basic unit that 
contains sufficient data to identify an audio clip (and therefore 
determining the granularity) will be referred to as a fingerprint-
block. 

The proposed fingerprint extraction scheme is based on this 
general streaming approach. It extracts 32-bit sub-fingerprints for 
every interval of 11.6 milliseconds. A fingerprint block consists of 
256 subsequent sub-fingerprints, corresponding to a granularity of 
only 3 seconds. An overview of the scheme is shown in Figure 1. 
The audio signal is first segmented into overlapping frames. The 
overlapping frames have a length of 0.37 seconds and are 
weighted by a Hanning window with an overlap factor of 31/32. 
This strategy results in the extraction of one sub-fingerprint for 
every 11.6 milliseconds. In the worst-case scenario the frame 
boundaries used during identification are 5.8 milliseconds off with 
respect to the boundaries used in the database of pre-computed 
fingerprints. The large overlap assures that even in this worst-case 
scenario the sub-fingerprints of the audio clip to be identified are 
still very similar to the sub-fingerprints of the same clip in the 
database.  Due to the large overlap subsequent sub-fingerprints 
have a large similarity and are slowly varying in time. Figure 2a 
shows an example of an extracted fingerprint block and the slowly 
varying character along the time axis. 

The most important perceptual audio features live in the frequency 
domain. Therefore a spectral representation is computed by 
performing a Fourier transform on every frame. Due to the 
sensitivity of the phase of the Fourier transform to different frame 
boundaries and the fact that the Human Auditory System (HAS) is 
relatively insensitive to phase, only the absolute value of the 
spectrum, i.e. the power spectral density, is retained. 

In order to extract a 32-bit sub-fingerprint value for every frame, 
33 non-overlapping frequency bands are selected. These bands lie 
in the range from 300Hz to 2000Hz (the most relevant spectral 
range for the HAS) and have a logarithmic spacing. The 
logarithmic spacing is chosen, because it is known that the HAS 
operates on approximately logarithmic bands (the so-called Bark 
scale). Experimentally it was verified that the sign of energy 
differences (simultaneously along the time and frequency axes) is 
a property that is very robust to many kinds of processing. If we 
denote the energy of band m of frame n by E(n,m) and the m-th bit 
of the sub-fingerprint of frame n by F(n,m), the bits of the sub-
fingerprint are formally defined as (see also the gray block in  

Figure 1, where T is a delay element): 

 

Figure 2 shows an example of 256 subsequent 32-bit sub-
fingerprints (i.e. a fingerprint block), extracted with the above 
scheme from a short excerpt of  “O Fortuna” by Carl Orff.  A ‘1’ 
bit corresponds to a white pixel and a ‘0’ bit to a black pixel. 
Figure 2a and Figure 2b show a fingerprint block from an original 
CD and the MP3 compressed (32Kbps) version of the same 
excerpt, respectively. Ideally these two figures should be identical, 
but due to the compression some of the bits are retrieved 
incorrectly. These bit errors, which are used as the similarity 
measure for our fingerprint scheme, are shown in black in Figure 
2c.  

The computing resources needed for the proposed algorithm are 
limited. Since the algorithm only takes into account frequencies 
below 2kHz the received audio is first down sampled to a mono 
audio stream with a sampling rate of 5kHz. The sub-fingerprints 
are designed such that they are robust against signal degradations. 
Therefore very simple down sample filters can be used without 
introducing any performance degradation. Currently 16 tap FIR 
filters are used. The most computationally demanding operation is 
the Fourier transform of every audio frame. In the down sampled 
audio signal a frame has a length of 2048 samples. If the Fourier 
transform is implemented as a fixed point real-valued FFT the 
fingerprinting algorithm has been shown to run efficiently on 
portable devices such as a PDA or a mobile phone. 

4.3 False Positive Analysis 
Two 3-second audio signals are declared similar if the Hamming 
distance (i.e. the number of bit errors) between the two derived 
fingerprint blocks is below a certain threshold T. This threshold 
value T directly determines the false positive rate Pf, i.e. the rate at 
which audio signals are incorrectly declared equal: the smaller T, 
the smaller the probability Pf will be. On the other hand, a small 
value of T will negatively effect the false negative probability Pn, 

Figure 2. (a) Fingerprint block of original music clip, 
(b) fingerprint block of a compressed version, (c) the 
difference between a and b showing the bit errors in 

black (BER=0.078). 
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i.e. the probability that two signals are ‘equal’, but not identified 
as such.  

In order to analyze the choice of this threshold T, we assume that 
the fingerprint extraction process yields random i.i.d. 
(independent and identically distributed) bits. The number of bit 
errors will then have a binomial distribution (n,p), where n equals 
the number of bits extracted and p (= 0.5) is the probability that a 
‘0’ or ‘1’ bit is extracted. Since n (= 8192 = 32 × 256) is large in 
our application, the binomial distribution can be approximated by 
a normal distribution with a mean µ = np and standard deviation 
σ =√(np(1-p)). Given a fingerprint block F1, the probability that a 
randomly selected fingerprint block F2 has less than T = α n errors 
with respect to F1 is given by: 
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where α denotes the Bit Error Rate (BER). 

However, in practice the sub-fingerprints have high correlation 
along the time axis. This correlation is due not only to the inherent 
time correlation in audio, but also by the large overlap of the 
frames used in fingerprint extraction. Higher correlation implies a 
larger standard deviation, as shown by the following argument. 

Assume a symmetric binary source with alphabet {-1,1} such that 
the probability that symbol xi and symbol xi+1 are the same is 
equals to q. Then one may easily show that 

 ,]E[ ||k
kii axx =+

 (3) 

where a = 2·q-1. If the source Z is the exclusive-or of two such 
sequences X and Y, then Z is symmetric and  

 .]E[ ||2 k
kii azz =+

 (4) 

For N large, the standard deviation of the average NZ  over N 

consecutive samples of Z can be approximately described by a 
normal distribution with mean 0 and standard deviation equal to  

 .
)1(

1
2

2

aN
a

−
+  (5) 

Translating the above back to the case of fingerprints bits, a 
correlation factor a between subsequent fingerprint bits implies an 
increase in standard deviation for the BER by a factor  

 .
1
1

2

2

a
a

−
+  (6) 

To determine the distribution of the BER with real fingerprint 
blocks a fingerprint database of 10,000 songs was generated. 
Thereafter the BER of 100,000 randomly selected pairs of 
fingerprint blocks were determined. The standard deviation of the 
resulting BER distribution was measured to be 0.0148, 
approximately 3 times higher than the 0.0055 one would expect 
from random i.i.d. bits. 

Figure 3 shows the log Probability Density Function (PDF) of the 
measured BER distribution and a normal distribution with mean 
of 0.5 and a standard deviation of 0.0148. The PDF of the BER is 
a close approximation to the normal distribution. For BERs below 
0.45 we observe some outliers, due to insufficient statistics. To 
incorporate the larger standard deviation of the BER distribution 
Formula (2) is modified by inclusion of a factor 3. 
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The threshold for the BER used during experiments was α = 0.35. 
This means that out of 8192 bits there must be less than 2867 bits 
in error in order to decide that the fingerprint blocks originate 
from the same song. Using formula (7) we arrive at a very low 
false positive rate of erfc(6.4)/2= 3.6·10-20.  

4.4 Experimental Robustness Results 
In this subsection we show the experimental robustness of the 
proposed audio fingerprinting scheme. That is, we try to answer 
the question of whether or not the BER between the fingerprint 
block of an original and a degraded version of an audio clip 
remains under the threshold α (=0.35). 

We selected four short audio excerpts (Stereo, 44.1kHz, 16bps) 
from songs that belong to different musical genres: “O Fortuna” 
by Carl Orff, “Success has made a failure of our home” by Sinead 
o’Connor, “Say what you want” by Texas and “A whole lot of 
Rosie” by AC/DC.  All of the excerpts were subjected to the 
following signal degradations: 

• MP3 Encoding/Decoding at 128 Kbps and 32 Kbps. 

• Real Media Encoding/Decoding at 20 Kbps. 

• GSM Encoding at Full Rate with an error-free channel and 
a channel with a carrier to interference (C/I) ratio of 4dB 
(comparable to GSM reception in a tunnel). 

• All-pass Filtering using the system function: H(z)=(0.81z2-
1.64z+1)/ (z2-1.64z+0.81). 

• Amplitude Compression with the following compression 
ratios: 8.94:1 for |A| ≥ -28.6 dB; 1.73:1 for -46.4 dB < |A| < -
28.6 dB; 1:1.61 for |A| ≤  -46.4 dB. 

• Equalization A typical10-band equalizer with the following 
settings: 

Freq.(Hz) 31 62 125 250 500 1k 2k 4k 8k 16k 

Gain(dB) -3 +3 -3 +3 -3 +3 -3 +3 -3 +3 

• Band-pass Filtering using a second order Butterworth filter 
with cut-off frequencies of 100Hz and 6000Hz. 

• Time Scale Modification of +4% and -4% . Only the tempo 
changes, the pitch remains unaffected. 
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Figure 3. Comparison of the probability density function of 
the BER plotted as ‘+’ and the normal distribution. 
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• Linear Speed Change of +1%, -1%, +4% and -4%. Both 
pitch and tempo change. 

• Noise Addition with uniform white noise with a maximum 
magnitude of 512 quantization steps. 

• Resampling consisting of subsequent down and up sampling 
to 22.05 kHz and 44.10 kHz, respectively. 

• D/A A/D Conversion using a commercial analog tape 
recorder. 

Thereafter the BERs between the fingerprint blocks of the original 
version and of all the degraded versions were determined for each 
audio clip. The resulting BERs are shown in Table 1. Almost all 
the resulting bit error rates are well below the threshold of 0.35, 
even for GSM encoding2. The only degradations that lead to a 
BER above threshold are large linear speed changes. Linear speed 
changes larger then +2.5% or –2.5% percent generally result in bit 
error rates higher than 0.35. This is due to misalignment of the 
framing (temporal misalignment) and spectral scaling (frequency 
misalignment). Appropriate pre-scaling (for example by 
exhaustive search) can solve this issue. 

 

5. DATABASE SEARCH 
5.1 Search Algorithm 
Finding extracted fingerprints in a fingerprint database is a non-
trivial task. Instead of searching for a bit exact fingerprint (easy!), 
the most similar fingerprint needs to be found. We will illustrate 
this with some numbers based on the proposed fingerprint scheme. 
Consider a moderate size fingerprint database containing 10,000 
songs with an average length of 5 minutes. This corresponds to 
approximately 250 million sub-fingerprints. To identify a 
fingerprint block originating from an unknown audio clip we have 
to find the most similar fingerprint block in the database. In other 
words, we have to find the position in the 250 million sub-
fingerprints where the bit error rate is minimal. This is of course 
possible by brute force searching. However this takes 250 million 
fingerprint block comparisons.  Using a modern PC, a rate of 
                                                                 
2 Recall that a GSM codec is optimized for speech, not for general 

audio. 

approximately of 200,000 fingerprint block comparisons per 
second can be achieved. Therefore the total search time for our 
example will be in the order of 20 minutes! This shows that brute 
force searching is not a viable solution for practical applications. 

We propose to use a more efficient search algorithm. Instead of 
calculating the BER for every possible position in the database, 
such as in the brute-force search method, it is calculated for a few 
candidate positions only. These candidates contain with very high 
probability the best matching position in the database.  

In the simple version of the improved search algorithm, candidate 
positions are generated based on the assumption that it is very 
likely that at least one sub-fingerprint has an exact match at the 
optimal position in the database [3][5]. If this assumption is valid, 
the only positions that need to be checked are the ones where one 
of the 256 sub-fingerprints of the fingerprint block query matches 
perfectly. To verify the validity of the assumption, the plot in 
Figure 4 shows the number of bit errors per sub-fingerprint for the 
fingerprints depicted in Figure 2. It shows that there is indeed a 
sub-fingerprint that does not contain any errors. Actually 17 out of 
the 256 sub-fingerprints are error-free. If we assume that the 
“original” fingerprint of Figure 2a is indeed loaded in the 

Table 1. BER for different kinds of signal degradations.  

Processing Orff Sinead Texas AC/DC 
MP3@128Kbps 0.078 0.085 0.081 0.084 
MP3@32Kbps 0.174 0.106 0.096 0.133 
Real@20Kbps 0.161 0.138 0.159 0.210 
GSM  0.160 0.144 0.168 0.181 
GSM C/I = 4dB 0.286 0.247 0.316 0.324 
All-pass filtering  0.019 0.015 0.018 0.027 
Amp. Compr. 0.052 0.070 0.113 0.073 
Equalization 0.048 0.045 0.066 0.062 
Echo Addition 0.157 0.148 0.139 0.145 
Band Pass Filter 0.028 0.025 0.024 0.038 
Time Scale +4% 0.202 0.183 0.200 0.206 
Time Scale –4% 0.207 0.174 0.190 0.203 
Linear Speed +1% 0.172 0.102 0.132 0.238 
Linear Speed -1% 0.243 0.142 0.260 0.196 
Linear Speed +4% 0.438 0.467 0.355 0.472 
Linear Speed -4% 0.464 0.438 0.470 0.431 
Noise Addition 0.009 0.011 0.011 0.036 
Resampling 0.000 0.000 0.000 0.000 
D/A A/D 0.088 0.061 0.111 0.076 

 

50 100 150 200 250
0

5

10

15

20

25

30

Frame number

B
it 

er
ro

rs
 p

er
 s

ub
-fi

ng
er

pr
in

t (
   

   
  )

0

5

10

15

20

25

30

M
os

t r
e

lia
bl

e 
er

ro
ne

ou
s 

bi
t (

   
   

  )

50 100 150 200 250
0

5

10

15

20

25

30

Frame number

B
it 

er
ro

rs
 p

er
 s

ub
-fi

ng
er

pr
in

t (
   

   
  )

0

5

10

15

20

25

30

M
os

t r
e

lia
bl

e 
er

ro
ne

ou
s 

bi
t (

   
   

  )

Figure 5. Bit errors per sub-fingerprint (gray line) and the 
reliability of the most reliable erroneous bit (black line) for 
the “MP3@32Kbps version” of ‘O Fortuna’ by Carl Orff. 
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Figure 4. Bit errors per sub-fingerprint for the “MP3@ 
128Kbps version” of excerpt of  ‘O Fortuna’ by Carl Orff. 
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database, its position will be among the selected candidate 
positions for the “MP3@128Kbps fingerprint” of Figure 2b. 

The positions in the database where a specific 32-bit sub-
fingerprint is located are retrieved using the database architecture 
of Figure 6. The fingerprint database contains a lookup table 
(LUT) with all possible 32 bit sub-fingerprints as an entry. Every 
entry points to a list with pointers to the positions in the real 
fingerprint lists where the respective 32-bit sub-fingerprint are 
located.  In practical systems with limited memory3 a lookup table 
containing 232 entries is often not feasible, or not practical, or 
both. Furthermore the lookup table will be sparsely filled, because 
only a limited number of songs can reside in the memory. 
Therefore, in practice, a hash table [19] is used instead of a lookup 
table. 

Let us again do the calculation of the average number of 
fingerprint block comparisons per identification for a 10,000-song 
database. Since the database contains approximately 250 million 
sub-fingerprints, the average number of positions in a list will be 
0.058(=250·106 / 232). If we assume that all possible sub-
fingerprints are equally likely, the average number of fingerprint 
comparisons per identification is only 15 (=0.058 × 256). 
However we observe in practice that, due to the non-uniform 
distribution of sub-fingerprints, the number of fingerprint 
comparisons increases roughly by a factor of 20. On average 300 
comparisons are needed, yielding an average search time of 1.5 
milliseconds on a modern PC. The lookup-table can be 
implemented in such a way that it has no impact on the search 
time. At the cost of a lookup-table, the proposed search algorithm 
is approximately a factor 800,000 times faster than the brute force 
approach. 

The observing reader might ask: “But, what if your assumption 
that one of the sub-fingerprints is error-free does not hold?” The 
answer is that the assumption almost always holds for audio 

                                                                 
3 For example a PC with a 32-bit Intel processor has a memory 

limit of 4 GB. 

signals with “mild” audio signal degradations (See also Section 
5.2). However, for heavily degraded signals the assumption is 
indeed not always valid. An example of a plot of the bit errors per 
sub-fingerprint for a fingerprint block that does not contain any 
error-free sub-fingerprints, is shown in Figure 5. There are 
however sub-fingerprints that contain only one error. So instead of 
only checking positions in the database where one of the 256 sub-
fingerprints occurs, we can also check all the positions where sub-
fingerprints occur which have a Hamming distance of one (i.e. one 
toggled bit) with respect to all the 256 sub-fingerprints. This will 
result in 33 times more fingerprint comparisons, which is still 
acceptable. However, if we want to cope with situations that for 
example the minimum number of bit errors per sub-fingerprint is 
three (this can occur  in the mobile phone application), the number 
of fingerprint comparisons will increase with a factor of 5489, 
which leads to unacceptable search times. Note that the observed 
non-uniformity factor of 20 is decreasing with increasing number 
of bits being toggled. If for instance all 32 bits of the sub-
fingerprints are used for toggling, we end up with the brute force 
approach again, yielding a multiplication factor of 1. 

Since randomly toggling bits to generate more candidate positions 
results very quickly in unacceptable search times, we propose to 
use a different approach that uses soft decoding information. That 
is, we propose to estimate and use the probability that a fingerprint 
bit is received correctly. 

The sub-fingerprints are obtained by comparing and thresholding 
energy differences (see bit derivation block in Figure 1). If the 
energy difference is very close to the threshold, it is reasonably 
likely that the bit was received incorrectly (an unreliable bit). On 
the other hand, if the energy difference is much larger than the 
threshold the probability of an incorrect bit is low (a reliable bit). 
By deriving reliability information for every bit of a sub-
fingerprint, it is possible to expand a given fingerprint into a list of 
probable sub-fingerprints. By assuming that one of the most 
probable sub-fingerprints has an exact match at the optimal 
position in the database, the fingerprint block can be identified as 
before. The bits are assigned a reliability ranking from 1 to 32, 
where a 1 denotes the least reliable and a 32 the most reliable bit. 
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This results in a simple way to generate a list of most probable 
sub-fingerprints by toggling only the most unreliable bits. More 
precisely, the list consists of all the sub-fingerprints that have the 
N most reliable bits fixed and all the others variable. If the 
reliability information is perfect, one expects that in the case 
where a sub-fingerprint has 3 bit errors, the bits with reliability 1, 
2 and 3 are erroneous. If this is the case, fingerprint blocks where 
the minimum number of bit errors per sub-fingerprint is 3, can be 
identified by generating candidate positions with only 8 (=23) sub-
fingerprints per sub-fingerprint. Compared to the factor 5489 
obtained when using all sub-fingerprints with a Hamming distance 
of 3 to generate candidate positions, this is an improvement with a 
factor of approximately 686. 

In practice the reliability information is not perfect (e.g. it happens 
that a bit with a low reliability is received correctly and vice-
versa), and therefore the improvements are less spectacular, but 
still significant. This can for example be seen from Figure 5. The 
minimum number of bit-errors per sub-fingerprint is one. As 
already mentioned before, the fingerprint block can then be 
identified by generating 33 times more candidate positions. Figure 
5 also contains a plot of the reliability for the most reliable bit that 
is retrieved erroneously. The reliabilities are derived from the 
MP3@32Kbps version using the proposed method. We see that 
the first sub-fingerprint contains 8 errors. These 8 bits are not the 
8 weakest bits because one of the erroneous bits has an assigned 
reliability of 27. Thus, the reliability information is not always 
reliable. However if we consider sub-fingerprint 130, which has 
only a single bit-error, we see that the assigned reliability of the 
erroneous bit is 3. Therefore this fingerprint block would have 
pointed to a correct location in the fingerprint database when 
toggling only the 3 weakest bits. Hence the song would be 
identified correctly. 

We will finish this sub-section by again referring to Figure 6 and 
giving an example of how the proposed search algorithm works. 
The last extracted sub-fingerprint of the fingerprint block in 
Figure 6 is 0x00000001. First the fingerprint block is compared to 
the positions in the database where sub-fingerprint 0x00000001 is 

located. The LUT is pointing to only one position for sub-
fingerprint 0x00000001, a certain position p in song 1. We now 
calculate the BER between the 256 extracted sub-fingerprints (the 
fingerprint block) and the sub-fingerprint values of song 1 from 
position p-255 up to position p. If the BER is below the threshold 
of 0.35, the probability is high that the extracted fingerprint block 
originates from song 1. However if this is not the case, either the 
song is not in the database or the sub-fingerprint contains an error. 
Let us assume the latter and that bit 0 is the least reliable bit. The 
next most probable candidate is then sub-fingerprint 0x00000000. 
Still referring to Figure 6, sub-fingerprint 0x00000000 has two 
possible candidate positions: one in song 1 and one in song 2. If 
the fingerprint block has a BER below the threshold with respect 
to the associated fingerprint block in song 1 or 2, then a match 
will be declared for song 1 or 2, respectively. If neither of the two 
candidate positions give a below threshold BER, either other 
probable sub-fingerprints are used to generate more candidate 
positions, or there is a switch to one of the 254 remaining sub-
fingerprints where the process repeats itself. If all 256 sub-
fingerprints and their most probable sub-fingerprints have been 
used to generate candidate positions and no match below the 
threshold has been found the algorithm decides that it cannot 
identify the song. 

5.2 Experimental Results 
Table 2 shows how many of the generated candidate positions are 
pointing to the matching fingerprint block in the database for the 
same set of signal degradations used in the robustness 
experiments. We will refer to this number as the number of hits in 
the database. The number of hits has to be one or more to identify 
the fingerprint block and can be maximally 256 in the case that all 
sub-fingerprints generate a valid candidate position.  

The first number in every cell is the number of hits in case only 
the sub-fingerprints themselves are used to generate candidate 
positions (i.e. no soft decoding information is used). We observe 
that the majority of the fingerprint blocks can be identified, 
because one or more hits occur. However a few fingerprint blocks, 
mainly originating from more severely degraded audio, such as at 
GSM with C/I of 4dB, do not generate any hits. This setting of the 
search algorithm can be used in applications, such as broadcast 
monitoring and automated labeling of MP3’s, where only minor 
degradations of the audio are expected. 

The second number in every cell corresponds to the number of 
hits with a setting that is used to identify heavily distorted audio 
as, for example, in the mobile phone application. Compared to the 
previous setting the 1024 most probable sub-fingerprints of every 
sub-fingerprint are additionally used to generate candidates. In 
other words, the 10 least reliable bits of every sub-fingerprint are 
toggled to generate more candidate positions.  The resulting 
number of hits are higher, and even the “GSM C/I = 4dB 
fingerprint blocks” can be identified. Most of the fingerprint 
blocks with linear speed changes still do not have any hits. The 
BER of these blocks is already higher than the threshold and for 
that reason they cannot be identified even if hits occur. 
Furthermore one has to keep in mind that with appropriate pre-
scaling, as proposed in Section 4.4, the fingerprint blocks with 
large linear speed changes can be identified rather easily. 

6. CONCLUSIONS 
In this paper we presented a new approach to audio fingerprinting. 
The fingerprint extraction is based on extracting a 32 bit sub-
fingerprint every 11.8 milliseconds. The sub-fingerprints are 
generated by looking at energy differences along the frequency 
and the time axes. A fingerprint block, comprising 256 subsequent 
sub-fingerprints, is the basic unit that is used to identify a song. 

Table 2. Hits in the database for different kinds of signal 
degradations. First number indicates the hits for using only 

the 256 sub-fingerprints to generate candidate positions. 
Second number indicates hits when 1024 most probable 

candidates for every sub-fingerprint are also used. 

Processing Orff Sinead Texas ACDC 
MP3@128Kbps 17, 170 20, 196 23, 182 19, 144 
MP3@32Kbps 0, 34 10, 153 13, 148 5, 61 
Real@20Kbps 2, 7 7, 110 2, 67 1, 41 
GSM  1, 57 2, 95 1, 60 0, 31 
GSM C/I = 4dB 0, 3 0, 12 0, 1 0, 3 
All-pass filtering  157, 240 158, 256 146, 256 106, 219 
Amp. Compr. 55, 191 59, 183 16, 73 44, 146 
Equalization 55, 203 71, 227 34, 172 42, 148 
Echo Addition 2, 36 12, 69 15, 69 4, 52 
Band Pass Filter 123, 225 118, 253 117, 255 80, 214 
Time Scale +4% 6, 55 7, 68 16, 70 6, 36 
Time Scale –4% 17, 60 22, 77 23, 62 16, 44 
Linear Speed +1% 3, 29 18, 170 3, 82 1, 16 
Linear Speed -1% 0, 7 5, 88 0, 7 0, 8 
Linear Speed +4% 0, 0 0, 0 0, 0 0, 1 
Linear Speed -4% 0, 0 0, 0 0, 0 0, 0 
Noise Addition 190, 256 178, 255 179, 256 114, 225 
Resampling 255, 256 255, 256 254, 256 254, 256 
D/A A/D 15,149 38, 229 13, 114 31,145 
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The fingerprint database contains a two-phase search algorithm 
that is based on only performing full fingerprint comparisons at 
candidate positions pre-selected by a sub-fingerprint search. With 
reference to the parameters that were introduced in Section 2.2, 
the proposed system can be summarized as follows: 

• Robustness: the fingerprints extracted are very robust. 
They can even be used to identify music recorded and 
transmitted by a mobile telephone. 

• Reliability: in Section 4.3 we derived a model for the 
false positive rate, which was confirmed by experiments. 
By setting the threshold to 0.35 a false positive rate of 
3.6·10-20 is achieved.  

• Fingerprint size: a 32 bit fingerprint is extracted every 
11.8 ms, yielding a fingerprint size of 2.6kbit/s 

• Granularity: a fingerprint block consisting of 256 sub-
fingerprints and corresponding to 3 seconds of audio is 
used as the basic unit for identification. 

• Search speed and scalability: by using a two-phase 
fingerprint search algorithm a fingerprint database 
containing 20,000 songs and handling dozens of 
requests per second can run on a modern PC. 

Future research will focus on other feature extraction techniques 
and optimization of the search algorithm.  
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