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ABSTRACT
In this paper, a new system for the automatic transcription of singing
sequences into a sequence of pitch and duration pairs is presented.
Although such a system may have a wider range of applications, it
was mainly developed to become the acoustic module of a query-
by-humming (QBH) system for retrieving pieces of music from a
digitized musical library. The first part of the paper is devoted to
the systematic evaluation of a variety of state-of-the art transcription
systems. The main result of this evaluation is that there is clearly a
need for more accurate systems. Especially the segmentation was
experienced as being too error prone (� �� % segmentation errors).
In the second part of the paper, a new auditory model based tran-
scription system is proposed and evaluated. The results of that eval-
uation are very promising. Segmentation errors vary between 0 and
7 %, dependent on the amount of lyrics that is used by the singer.
The paper ends with the description of an experimental study that
was issued to demonstrate that the accuracy of the newly proposed
transcription system is not very sensitive to the choice of the free
parameters, at least as long as they remain in the vicinity of the
values one could forecast on the basis of their meaning.

1. INTRODUCTION
It sounds appealing to have the possibility of retrieving a musical
piece from a musical database, just by singing or humming an ex-
cerpt from that piece. In general, the proposed retrieval methodol-
ogy is called Query-by-Humming (QBH). Both academic interest
and practical appeal have encouraged the development of QBH sys-
tems over the last decade.
In this paper, we only consider singing sequences, be it that we
make a distinction between singing with lyrics (i.e. singing the
words), or singing without lyrics (i.e. singing with meaningless
syllables like /da/, /na/, /du/, etc). Most dedicated state-of-the-art
QBH systems were specifically designed for and tested on singing
without lyrics. Some systems even put additional restrictions on the
type of syllables that can be used (mostly /da/).
Nearly all QBH system consist of two parts: (i) an acoustic module
for converting the acoustic input into a sequence of segments (time
intervals) with associated discrete frequencies (notes), and (ii) a pat-
tern matching module for matching this sequence to the musical
data in a database. In case the acoustic signal is a singing sequence,
notes cannot overlap in time. The result of the transcription system
should thus be a segmentation of the signal into successive notes,
optionally separated by white-spaces.
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Most QBH systems (see for instance [10, 15, 19, 25]) are dedicated
systems whose acoustic module always produces a result meeting
this constraint. However, some systems use a general purpose wav-
to-midi converter instead (see for instance [8, 14]). Such a converter
may also produce overlapping notes, which may be resolved by a
proper post-processing of the output before supplying it to the QBH
pattern matcher.
In this paper we are solely dealing with the acoustic module of a
QBH system. It is expected though, that the performance of the
QBH system as a whole is highly dependent on the quality of the
transcription provided by this module. This quality can be ex-
pressed in terms of the number of segmentation errors (deleted or
inserted notes), substitution errors (the note was incorrect in terms
of its frequency), and time alignment errors (the detected segment
has different endpoints than the correct segment). The substitution
errors mainly affect the transcribed melody, whereas the other errors
mainly affect the rhythm.
Some QBH systems do not perform a segmentation (see for instance
[5, 9, 18, 21]) and just convert the acoustic input into a pitch con-
tour (e.g. one pitch sample per frame of 10 ms). It is our conviction
however that similarity matching on the basis of pitch only is not
powerful enough. In fact, an obvious objection is that it relies on
the weakest point of a mediocre singer, namely the correctness of
his pitch contour. Rhythm is also considered an important aspect
of human music recognition, especially for the recognition of mu-
sic with a less expressive pitch pattern, and there is no reason to
believe that rhythm would be unimportant for an automatic QBH
system. Therefore, all systems described in this paper intend to per-
form a segmentation.
The structure of this paper is as follows. In section 2 we outline the
general principles underlying the acoustic modules of some state-
of-the-art QBH systems. Then we describe our methodology for
evaluating the transcriptions provided by such a module, and we
present the results of an evaluation of 8 modules. Following the
results of this evaluation we have developed a more accurate tran-
scription system, as described in section 3. The evaluation of this
new system is presented and discussed in section 4. The paper ends
with some conclusions.

2. THE ACOUSTIC MODULE OF A QBH
SYSTEM

The acoustic module of a QBH system always contains an acoustic
front-end to transform the acoustic signal into a parametric repre-
sentation of the time-frequency information carried by this signal.
This parametric representation is then analyzed in detail by the tran-
scription module, in order to produce the requested transcription of
the acoustic signal.
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2.1 The acoustic front-end
The acoustic front-end aims to extract features that are relevant for
the transcription process. The main features usually are the energy
(or some more complex estimate of the loudness of the signal),
the pitch and the degree of voicing. The features are determined
per frame of a certain length, and subsequent frames are typically
shifted over 10 ms. If frames are chosen longer than 10 ms, subse-
quent frames overlap.
As far as we know, only the Haus and Pollastri system has extracted
the degree of voicing. The extraction is based on the mean and
standard deviation of the energy and the zero-crossing rate of the
derivative of the background noise and the signal. Using this in-
formation, the system tries to discriminate between vowels, voiced
consonants and unvoiced sounds.
Traditionally, pitch detection has received most attention in the
acoustic front-end of a QBH system. By far the mostly used pitch
determination method is the autocorrelation method (see for in-
stance [5, 8, 21]). Meldex on the other hand uses the Gold-Rabiner
algorithm [20].

2.2 The transcription system
Transcription systems consist of two parts: a segmentation part, in
which the audio input is divided into note segments and white-
spaces, and a note assignment part, in which a single note (fre-
quency) is assigned to every note segment. The methods of doing
such, vary widely from system to system. We will summarize the
methods adopted by two well documented systems.
Meldex [15, 16, 17] uses a segmentation which is purely based on
the root mean square (RMS) - the square root of the energy - as a
function of time. A note onset is recorded when the RMS exceeds
some threshold and a note offset is recorded when the RMS drops
below a second lower threshold. The thresholds were respectively
set at 35% and 55% of the mean RMS over the entire signal. A
note is assigned to the segment by identifying the highest peak in
the histogram of the frame-level pitch frequencies found in the seg-
ment, and by computing the average of the pitches lying in that bin.
The pitch is then converted to a MIDI note using a scale which is
adapting to the intonation of the user. The idea is to keep track of
the bias in the computed frequency of the singer, and to subtract this
before performing the note assignment. As shown in [10] however,
simply rounding the computed to the closest note frequency yields
a better performance.
The system of Haus and Pollastri [10] is more elaborate. The seg-
mentation process starts with a first estimation of segment bound-
aries based on signal/noise discrimination, with the noise level set
to 15% above the RMS of the first 60 ms of the input. Next, the
on/offset estimation is refined by incorporating the detection of
vowels, voiced consonants and unvoiced sounds. The pitch of a
segment is computed on the basis of the frames labeled as vowel
in this segment. After the fundamental frequencies have been de-
tected, they are median filtered (mediating three subsequent frames)
and checked for octave errors. Four adjacent frames with similar
fundamental frequencies are grouped into a block. Legato is de-
tected when subsequent blocks have pitches more than 0.8 semi-
tones apart. In this case additional segment boundaries are inserted.
Just like in the Meldex system one aims at capturing the intention
of the singer. Conversion from frequencies to the equally tempered
scale incorporates a relative scale. The relative scale is based on
the assumption that each singer has a reference tone in mind and
that the other notes are sung relative to the scale constructed on that

tone. The first thing Pollastri tries to do is to look for the reference
tone. Global pitches of the segments are compared to an absolute
scale and differences are represented in a histogram of overlapping
bins of 0.2 semitones. The prominent peak is identified and an aver-
age is made over this winning bin to find the shift transforming the
absolute scale into the user scale. Shifting the absolute scale by this
amount minimizes the deviation error and thereby it is claimed that
the user scale has been found. Further refinements are made on the
basis of additional rules.

3. EVALUATION OF TRANSCRIPTION
SYSTEMS

In order to evaluate the quality of a system for the transcription of
singing sequences one needs (i) a representative corpus of singing
sequences by naive singers, (ii) a reliable reference transcription of
these sequences, and (iii) a good method for measuring the discrep-
ancies between the generated and the reference transcriptions in a
quantitative manner.

3.1 Corpus collection
Five men and six women of different ages (between 23 and 51 years
old) were asked to sing two excerpts from two different songs. They
were free to choose how they would sing: with or without lyrics.
All subjects were unexperienced singers. They were free to choose
a melody from a list of 50 which they had in front of them. The
subjects were invited in the room where the computer was, they
were given the list, they decided what tunes they would sing, and
they immediately started to sing. The recordings were made in a
normal office room with a home PC and a hand-held microphone
(type Sony ecm ms907). The samples were recorded at a sampling
frequency of 22.05 kHz with a resolution of 16 bit, and saved as a
PCM wav file.
A typical phenomenon was that the volume (loudness) was quite
large at the beginning, but much lower at the end. It also happened
frequently during singing with lyrics that the subjects fell out of
words and continued by singing parts without lyrics.
In total, 22 samples were recorded. Two recordings, one of a male
and one of a female subject, were taken out for algorithm develop-
ment and tuning, the remaining 18 samples (7 without and 11 with
lyrics) were considered as an evaluation corpus. This corpus con-
sisted of 150 seconds of acoustic signal, containing approximately
300 notes. Obviously, this corpus is too limited to be really repre-
sentative, but it was considered large enough to yield at least good
indications of expected system performances.

3.2 Making the reference transcriptions
In order to get a reliable reference transcription, a musical expert
was asked to segment the speech into notes and white-spaces. It
was found convenient to use the open source tool PRAAT [4] for
this purpose. The musical expert had to introduce time markers
indicating the beginning or end of a note, and to assign a note or
white-space label between two time markers. For doing this, the
expert had a visual image of the signal on the screen (see figure 1
which shows a screen dump), and the ability to listen repeatedly to
any fragment of the signal. The note labeling is found to be the most
time consuming part of the task.
Once the note labeling was ready, it was saved in the TextGrid for-
mat of Praat, and subsequently converted to a MIDI format [24], the
format that is used by most transcription systems.
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Figure 1: A screen dump of the image in front of the musical expert after he has introduced the note boundaries and the note labels, according
to the annotation scheme of the Autoscore system.

3.3 Evaluation methodology
The goal of the evaluation is to compare a computed transcription
with the reference transcription of the signal. As both can consist
of a different number of segments (notes and white-spaces), a direct
comparison is not straightforward. However, a simple solution is
offered by the Dynamic Time Warping algorithm (DTW) [23].
If the computed and reference transcriptions are characterized by
�� time markers ���� and �� time markers ���� respectively, we
want DTW to align each ���� with a ���� in such a way that the accu-
mulation of local costs attached to these alignments is minimized.
I.e., DTW must identify the warping path �� satisfying

�� � �����	
��

�����

���

�
����� ������� �����
� ��������

The pairs 
�� � � ��� can be represented as points on a path from
(1,1) to 
��� ��� in a two-dimensional trellis (see figure 2).
The path consists of subsequent transitions characterized by dis-
placements �� �  and �� � �� � ����. In order to obtain
a sensible path, �� � 
�� �� was imposed as a constraint. Obvi-
ously, the definition of the local cost contributions will determine
the properties of the alignment one obtains for a specific transcrip-
tion pair. Our first goal was to penalize the time differences between
the computed and their associated reference time markers. The note
frequency discrepancies were considered as a secondary criterion.
This way, the alignment does not depend too much on the qual-
ity of the pitch detector. The local cost contribution of a transition

������ was therefore determined on the basis of the following
considerations:

� �� � � means that two computed time markers are assigned
to the same reference marker. This points to an inserted time
marker in the computed transcription, and is penalized with
an insertion cost ���	 � ����.

� �� 	 � means that a new computed time marker is assigned
to a new reference marker. In this case one considers two
discrepancies: a discrepancy in the timing, and a discrep-
ancy in the note frequencies of the segments starting at these

time markers (a different note is considered as a note substi-
tution error). The timing cost �
��� is equal to the absolute
time difference divided by some �
�� which was set to
0.2s. The substitution cost �	�� is equal to the minimum of
0.5 semitones and 0.25 times the note frequency difference
in semitones. The substitution cost for assigning a note to a
white-space is set to 2 semitones.

� �� 	  means that some reference time marker is not as-
signed to any computed marker. This is penalized by an ex-
tra deletion cost ���� multiplied by the number of deletions
(�� � ).
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Figure 2: A warping path �� representing an alignment of the
automatic and the reference transcription of a singing sequence.

Once the alignment between the transcriptions is available, one can
easily determine the number of deletions and insertions along the
warping path. For determining the number of substitutions, we dis-
tinguished between exact or not, and between within a semitone or
not. In case two or more computed segments were assigned to the
same reference segment, the decision was based on a comparison of
the frequency of the computed segment that had the largest overlap
with the reference segment.
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4. EVALUATION OF STATE-OF-THE-ART
In this section we describe an experimental evaluation of 8 differ-
ent systems which are assumed to represent the state-of-the-art in
transcribing singing sequences.
Before reviewing the systems that were tested, we recall that some
of them allow the user to specify a lot of free parameter settings.
In all cases we used the preferred settings specified in the manual.
If the note range could be specified it was always set to (C2,C6) =
(65 Hz,1000 Hz).
Some programs seemed to introduce some delay. For that reason we
allowed transcriptions to be shifted in time before supplying them to
the DTW algorithm. The results presented later always correspond
to the time shift producing the lowest alignment cost.

4.1 Evaluated transcription systems
Some of the systems that were tested are commercial systems,
which are not well documented in terms of underlying methodolo-
gies. However, where references to scientific publications can be
made, they are included. Let us look at the list of the five systems
for which detailed results are provided in table 1:

Meldex This is maybe the most famous QBH system. For a recent
and detailed overview, we refer to [16].

Pollastri The system of Haus and Pollastri [10] was developed in
the context of query by humming, with the term humming
referring to singing without lyrics. In this case, the transcrip-
tion of our material was performed by the author himself. We
got the assurance from Pollastri that the conversion was made
under the same conditions as specified in [10].

Akoff Composer This is a shareware program by Andrei Kovalev
[1] for the conversion of monophonic music waves to a MIDI
file format.

Widi This is a polyphonic music recognition system developed by
Russian students in physics [28]. It has a monophonic mode,
and it is in this mode that we tested it.

Autoscore This is another off-the-shelf monophonic music to
MIDI converter [3]. This system has already been used for
query by humming by Naoko Kosugi [14].

Three other systems that were tested are the commercial packages
Audioworks [2], Digital Ear [7] and Intelliscore [12]. These sys-

tems performed (according to our tests) worse than Akoff, Widi or
Autoscore, and were therefore not included in table 1.

4.2 Detailed evaluation results
The evaluation results are summarized in table 1. The results are
separated according to the singing mode: with or without lyrics.
Two important conclusions can be drawn from these results:

1. All systems make a considerable amount of deletion and in-
sertion errors, and singing with lyrics seems to be much more
difficult to segment than singing without lyrics.

2. Although exact note recognition is low for all systems, most
systems provide a within 1 semitone note recognition ac-
curacy of 85.00 % or more. Especially Widi seems to in-
corporate an excellent pitch extractor. However, this is not
necessarily true since Widi produces many short (inserted)
notes for unstable segments, and consequently there is a high
chance that the longest segment in the more stable part of the
note has the correct pitch.

Note that for the published systems, our evaluation results appear
to be significantly worse than those reported in these publications.
One likely explanation is that the system performances depend too
much on the recording conditions (volume, noise, room acoustics)
and the parameter settings. Another explanation may be that we
used naive singers, and that for singing without lyrics, we did not
force them to use a particular syllable (e.g. the /ta/-syllable, proba-
bly the most easy one to analyze).
Listening to the transcribed sequences convinced us of the absolute
need for more accurate segmentations. Even the best system (Pol-
lastri) is usually unable to provide a sufficiently accurate segmen-
tation of the singing with lyrics sequences. That is why we have
conceived a new transcription system that is described in the next
section.

5. A NEW TRANSCRIPTION SYSTEM
The acoustic module of our QBH system comprises an auditory
model which is essentially the same model as that published in
[26]. However, it is the first time we have used it for the analysis
of human singing. Our main motivations for preferring an auditory
model over a more standard acoustic front-end are the following:

Table 1: Overview of the results obtained by comparing computed and reference transcriptions using the methodology outlined in section 3.

Akoff Autoscore Meldex Widi Pollastri
Singing without lyrics
notes deleted 6.72 % 7.26 % 37.31 % 5.22 % 4.76 %
notes inserted 11.19 % 14.29 % 4.48 % 64.18 % 7.94 %
notes deleted + inserted 17.91 % 21.55 % 41.79 % 69.40 % 12.70 %

exact note recognition error 40.71 % 54.26 % 53.73 % 31.15 % 48.31 %
note recognition error 	 1 semitone 4.42 % 10.64 % 28.36 % 1.64 % 10.37 %

Singing with lyrics
notes deleted 18.50 % 22.95 % 52.46 % 18.50 % 13.66 %
notes inserted 30.00 % 12.02 % 3.28 % 60.50 % 5.46 %
notes deleted + inserted 48.50 % 34.97 % 55.74 % 79.00 % 19.13 %

exact note recognition error 48.34 % 44.27 % 66.23 % 34.72 % 58.39 %
note recognition error 	 1 semitone 13.91 % 15.27 % 31.17 % 6.25 % 16.79 %
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1. We were able to prove that the speech loudness pattern
emerging from the model provides excellent cues for the pho-
netic segmentation of speech [27].

2. The built-in pitch extractor, called AMPEX (Auditory Model
based Pitch Extractor) has been proven to be among the best
pitch extractors available for speech analysis [11, 22].

3. Since the pioneering work of Davis and Mermelstein [6], the
perceptually based MFCCs (Mel-Frequency Cepstral Coeffi-
cients) have become the standard parametric representation
for speech recognition applications.

In the subsequent sections we first describe our auditory model and
the improvements that were made since the original publication of
the model. Then we introduce the segmentation and pitch assign-
ment algorithms that were developed to produce the envisaged tran-
scriptions.

5.1 The auditory model
A general outline of the auditory model is depicted in figure 3. The
acoustic signal is first filtered by a band-pass filter that models the
sound transmission in the outer and middle ear. The filtered signal is
then supplied to a cochlear processing block which models the con-
version of the acoustic signal into neural firing patterns observed in
groups of auditory nerve cells. Each group represents nerve cells
connected to neighboring hair-cells somewhere along the Basilar
Membrane (BM) in the cochlea. The number of cells in a group is
assumed to be large enough so as to make it sensible to characterize
the group response by means of a time pattern representing the neu-
ral firing density as a function of time. Each pattern is obtained by
one analysis channel consisting of a band-pass filter with a unique
tuning frequency, a non-linear hair-cell model and an envelope ex-
tractor. In agreement with physiological measurements [13], the
neural fibers do not transmit modulation frequencies that are much
larger than 500 Hz.
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Figure 3: Architecture of the auditory model front-end.

Each neural firing pattern is then split into a low and a high-
frequency component by means of a frequency splitter with a char-
acteristic frequency of 20 Hz. The low-frequency components are
decomposed of their spontaneous activity (value in the absence of
any signal), further low-pass filtered and down-sampled to 100 Hz
so as to form the components of an auditory spectrum. The lat-
ter represents the short-term neural activity (loudness) distribution

across channels. The high-frequency components are supplied to
a pitch extraction module, called AMPEX (Auditory Model based
Pitch EXtractor). It produces one pitch per frame, and it is consists
of three major parts:

1. A pseudo-autocorrelation analysis of the individual high-
frequency components ��
��: ��
�� is replaced by a se-
quence of pulses occurring at the positions of its maxima,
and a function ��
� � very much similar to a short-time au-
tocorrelation function is derived from this signal. The chan-
nel contributions are then accumulated to a global pseudo-
autocorrelation function �
� �.

2. A pitch candidate extraction algorithm that identifies all rel-
evant peaks (larger than a small threshold) in �
��, and thus
produces a set of pitch candidates 
� and their corresponding
evidences �� � �

�� for each frame.

3. A pitch continuity analysis to retrieve the best pitch 
�, its
corresponding voicing evidence ��, and a voiced/unvoiced
decision for each frame. If 
��� ��� (� � � ��� �� ) repre-
sent the pitch candidates and their evidences hypothesized in
frame �, and if the frame rate is 10 ms, the voicing evidence
of a pitch candidate 
 hypothesized in frame � is computed
as

��

 � �

����

�����

���

���

��� Æ

�
 � 
���

 � 
��

� �� � (1)

with Æ
�� being 1 if the condition is satisfied and 0 other-
wise, and with �� being a coincidence threshold. The pitch
candidate with the highest �� is selected as the pitch, and
a voiced/unvoiced decision is made on the basis of this evi-
dence (see [26]).

The auditory model is designed in such a way that it can process
a continuous audio stream. Obviously, due to the pitch continu-
ity analysis, there is a delay of 20 ms between the acoustic input
and the model output. When aligning the auditory features with the
acoustic signal, one has to compensate for this delay.
Since its publication in [26], AMPEX was further improved in the
following ways:

1. In order to make the voiced/unvoiced decision less dependent
on the signal level, the evidence assigned to a pitch candidate

 during the pitch candidate extraction stage is no longer not
�

 � but �

 ����
�� � �� �, with � being the number of
channels in the auditory model.

2. In order to reduce the number of harmonic pitch errors, the
pitch evidences computed in the pitch continuity analysis
were multiplied by ������
 (
 in ms) so as to compensate
for the tendency of the algorithm to produce somewhat larger
evidences for smaller values of 
 .

3. The pitch continuity analysis continues to seek for the pitch
candidate 
 getting the highest evidence according to equa-
tion (1), but it then determines the effectively generated pitch
hypothesis as


�

 � �

����
�����

���

��� 
����� Æ

������ �

�����
� �� �

����

�����

���

������ Æ

������ �

�����
� �� �

(2)

With these improvements, the total pitch and V/U error rate for the
speech database used in [26] was reduced from 5.1 to 3.7 %, and
there is also a much better balance between the performance for
male and female voices now.
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So as to reduce the CPU time, different channels are operated at dif-
ferent sampling frequencies. The auditory model therefore contains
a decimation unit to supply down-sampled copies of the input signal
to these channels. This unit was enhanced in two ways with respect
to [26]:

1. In order to prevent aliasing products of high-frequency tones
to produce activity in low-frequency channels, a higher order
decimation filter (with a high-frequency suppression of more
than 66 dB) was introduced.

2. In order to prevent harmonics, introduced by the half-wave
rectifier in the hair-cell models, to produce low-frequency
aliasing products in the hair-cell outputs, the sampling fre-
quency in a channel has to be larger than 7.2 times the center
frequency of the channel bandpass filter (see [26]). In order
to satisfy this condition for the high frequency channels, the
decimation unit was extended to produce an up-sampled ver-
sion of the input signal as well.

In all the experiments reported in this paper, the auditory model
comprises 23 channels covering the frequency range from 140 Hz
to 6 kHz, and it produces one acoustic parameter vector per
10 ms. Each vector consists of an auditory spectrum (23 values),
a voiced/unvoiced decision, a voicing evidence, a loudness value
and a pitch frequency (zero if the frame is unvoiced).
It is important to emphasize that all the free parameters of the au-
ditory model were optimized for normal speech processing. They
were not changed for the analysis of the singing sequences appear-
ing in the present study.

5.2 The segmentation algorithm
To begin with, the auditory spectrum components of a frame are ac-
cumulated across channels to produce the so called loudness of that
frame. The pitch (��), loudness (�) and voicing evidence (��) pat-
tern for a two-seconds extract from a singing sequence is depicted
on figure 4. These are the patterns which are further analyzed by
our segmentation system.
The segmentation is primarily based on the loudness function,
whose deep minima are supposed to delimit the note segments. In
order to obtain a robust decision, the deep minimum detection algo-
rithm must be able to deal with loudness fluctuations which are not
referring to note boundaries.
We have implemented a robust extremum detection algorithm which
assumes that there is some silence at the beginning of the file. The
algorithm goes from left to right, it starts by searching for a maxi-
mum and it proceeds according to the following principles.

1. While searching for a maximum
Keep track of the position and the value of the largest loud-
ness (stored as the potential maximum), and consider a max-
imum found at the moment the actual value is sufficiently
lower than the stored maximum. When a maximum is found,
store the position and loudness of the actual frame as a po-
tential minimum and start looking for a minimum.

2. While searching for a minimum
Keep track of the position and the value of the smallest loud-
ness (stored as the potential minimum), and consider a min-
imum found at the moment the actual value is sufficiently
higher than the stored minimum. When a minimum is found,
generate a new note segment (starting at the previous mini-
mum), store the position and loudness of the actual frame as
a potential maximum and start looking for a maximum.

To determine what sufficiently higher/lower is, we adopt Weber-
Fechner’s law of psycho-acoustics [29]. It states that equal
increments of sensation due to some energy variable are as-
sociated with equal increments of the logarithm of that vari-
able supplemented with some bias. Consequently, if �� is
the loudness bias, loudness �� is sufficiently higher/lower than
�� if ��� � ����
�� � ��� exceeds some threshold ��.
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Figure 4: The pitch, loudness and voicing evidence patterns
emerging from the auditory model.

In order to detect white-spaces too, the extremum detection algo-
rithm is further extended as follows. When the loudness goes under
some white-space threshold ��	 in more than 2 successive frames,
a note segment is generated and the search for extrema is inhibited
until 2 successive frames with a loudness above ��	 are encoun-
tered. At that moment, a white-space segment is generated, and a
new search for a maximum is started.
The white-space threshold can be made adaptive and proportional
to the lowest loudness found over the last two seconds, but as we
normalized the energy of the singing sequences before analyzing
them, it was possible to select a fixed threshold throughout the ex-
periments.

5.3 Post-processing the segments
It happens that low energy segments like breaths and noises appear
as note segments in the computed segmentation. In a segment post-
processing stage, we relabel them as white-spaces as soon as they
satisfy one of the following conditions:

1. the maximum voicing evidence is smaller than ����

2. the maximum loudness is smaller than ���	 (� 	 ).

This post-processing stage completes the segmentation process.

5.4 The pitch assignment algorithm
In order to determine the note label of a note segment, the pitch
contour is analyzed in the center part of that segment. The onset



An Auditory Model Based Transcriber of Singing Sequences

and offset of a note segment are excluded because pitch algorithms
have a tendency to make pitch errors in these areas. On the other
hand, the more pitch values one can retain, the more accurate the
computed pitch is going to be. We choose to consider the first and
last 2 frames as the onset and offset of the note segment. The note
label is obtained in two steps.

Step 1: segmental pitch determination
The segmental pitch is computed as the average of �� over the
frames of the segment (central part). To cope with possible oc-
tave errors this average is iteratively improved by eliminating those
frames whose pitch deviates more than a certain ��� from the ac-
tual average, and by computing a new average on the basis of the
remaining frames. The process is stopped as soon as the segmental
pitch does not change anymore. Usually this happens after one or
two iterations.
If one wants to maximize the note recognition within a semitone,
one intuitively feels that ��� should be smaller than �

�
� �  �

���. We have not tried to optimize this value, and used ��� �
��� in all our experiments.
In some exceptional cases, a segment may contain so many octave
errors that there are almost no pitch values within ��� of the first
segmental pitch approximation. To get the right frequency in this
case, an escape route is followed. It consists of constructing a his-
togram of the frame pitches and selecting the most likely value as
the segmental pitch.

Step 2 : note labeling
Once the segmental pitch is determined, it can be converted to a
MIDI note using the equally tempered frequency scale. Using the
conventions that A4 corresponds to 440Hz and that MIDI note zero
corresponds to C-1, one readily finds that

MIDI-note
��� �
���
������� �

��� ��
�
�

� ���� � ����� Hz (3)

We always round the frequency to the nearest MIDI note. No at-
tempt is made to adjust to the scale of the user. For the moment
we are only interested in transcribing the sequences as precisely as
possible, disregarding the intention of the singer.

6. EXPERIMENTAL RESULTS
Our system was evaluated in exactly the same way as the state-of-
the-art systems were in section 4.

6.1 Parameter tuning
The free parameters of the algorithm were optimized on the record-
ings of one male and one female singer which did not contribute
to the evaluation corpus (see section 3.1). In table 2 we have
listed the parameters, their meaning and their values. The param-
eters are grouped according to their appearance in the segmenta-
tion, the segment post-processing and the note assignment stages.

Table 2: Internal parameters and their settings found by empirical
evaluation.

parameter meaning value
�� min. loudness deviation 35%
�� loudness bias 2.5% of maximum
��	 white-space threshold 2.5% of maximum
���� min. note voicing evidence 15% of maximum
� min. note loudness vs ��	 3
��� max. frequency deviation 10%

6.2 Evaluation results
The results of our evaluation are labeled MAMI (after the
name of our project: Musical Audio Mining) in table 3.
They are presented in opposition to the results of the
best state-of-the-art system according to our previous tests.

Table 3: Transcription results for the proposed system (MAMI) as
compared to the results of the Pollastri system.

MAMI Pollastri
Singing without lyrics
notes deleted 0.00 % 4.76 %
notes inserted 2.24 % 7.94 %

notes deleted + inserted 2.24 % 12.70 %

exact note recognition error 35.88 % 48.31 %
note recognition error 	 1 semitone 1.53 % 10.37 %

Singing with lyrics
notes deleted 4.92 % 13.66 %
notes inserted 2.19 % 5.46 %

notes deleted + inserted 7.10 % 19.13 %

exact note recognition error 42.01 % 58.39 %
note recognition error 	 1 semitone 6.51 % 16.79 %

Apparently, both types of singing sequences are much better tran-
scribed by the MAMI system. The remaining 2.24% segmentation
errors in the singing without lyrics sequences all appear in one short
sequence which is sung with very unstable notes. The exact note
recognition errors are spread over the files. The note recognition
within a semitone is always very high (����� on average), ensuring
enough precision for a QBH application. Five of the seven singing
without lyrics sequences were transcribed 100% correctly.
Segmenting singing with lyrics has also reached an acceptable level
now (about 7% segmentation errors on average). The note recogni-
tion, although not as good as for singing without lyrics, is also quite
reliable (about 93.5 % on average).
It appears that over the whole set of 18 files no octave errors have
been made. The largest note deviation is 4 semitones, and it occured
only once.

6.3 Sensitivity to parameter settings
The main parameter for controlling the segmentation algorithm is
��. It was verified experimentally that the total deletion+insertion
error rates are not much affected as long as �� stays in the range
of 25% to 45%. In this range, loudness fluctuations due to
legato/vibrato usually do not emerge in inserted note boundaries.
The only parameter that controls the pitch assignment is ���.
Changing this parameter from 10 to 100% resulted in an increase
of the note recognition error within 1 semitone of only 2%. This is
owed to the large robustness of the AMPEX pitch detector.
Omitting the segment post-processing stage shows a 3 % increase
of the insertion error rate. Especially in the longer sequences breath
removal seems to be necessary.
The bottom line is that the settings of the free parameters are not
critical, and the optimal settings are very much in line with what
one would expect on the basis of their meaning.

6.4 Limitations of the present system
As AMPEX analyzes temporal fluctuations in the envelope patterns
of the auditory model hair-cell outputs, it cannot detect a pitch much
larger than 500 Hz. This means that whistling and singing with a
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high pitch cannot be handled by the present system. In spite of this
we obtain good results because our corpus contains only one file
with some whistling in it.
Monophonic instruments can in principle be handled adequately by
AMPEX as long as their pitch remains below 500 Hz. However, we
did not perform any test to confirm this.
So as to attain a higher applicability of the system, we are cur-
rently developing a frequency-based pitch extractor to complement
the time-based AMPEX algorithm. The frequency-based extractor
will identify maxima in the auditory spectrum, and use them to de-
rive a best pitch estimate and its evidence. Using this extension, it
should also become possible to handle whistling and monophonic
instruments with a high pitch.

7. CONCLUSIONS
We have established that most transcription systems are incapable
of accurately transcribing singing sequences of naive singers. Three
problems were identified: (i) they offer but a poor segmentation, (ii)
they can only handle singing with specified syllables (e.g. /ta/), and
(iii) their performance is very sensitive to the choices of the free
parameters. Some systems even require training from the user.
Astonished by this result, we have developed a new auditory model
based transcription system that seems to perform an acceptable seg-
mentation and note labeling of free singing (with or without lyrics,
and without any restrictions on the syllables used in singing with-
out lyrics). In addition, the performance of the algorithm is not very
sensitive to the settings of its free parameters.
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